

BAKERY LINES #1 & #2 (WITH OVENS) CONTROL EQUIPMENT INSTALLATION CONSTRUCTION PERMIT APPLICATION East Balt Commissary, LLC > Chicago, Illinois

Construction Permit Application

Prepared By:

TRINITY CONSULTANTS 1S660 Midwest Road Suite 250 Oakbrook Terrace, IL 60181 (630) 495-1470

October 2013

Project 131401.0127

Environmental solutions delivered uncommonly well

TABLE OF CONTENTS

1. EXECUTIVE SUMMARY	. 5
1.1. Existing Source Description	5
1.2. Project Description	6
2. PROJECT EMISSIONS	10
2.1. Emission Calculation Methodology	10
2.2. Project Emissions	10
3. REGULATORY APPLICABILITY	12
3.1. Federal Air Regulations	12
3.1.1. Prevention of Significant Deterioration (PSD)	12
3.1.2. Non-Attainment New Source Review (NA NSR)	12
3.1.3. New Source Performance Standards (NSPS)	12
3.1.4. National Emission Standards for Hazardous Air Pollutants (NESHAP)	. 13
3.2. State Air Regulations	13
3.2.1. State Permit Requirements	13
3.2.2. 35 IAC Part 212 - Particulate Matter Standards	13
3.2.3. 35 IAC Part 214 – Sulfur Dioxide Standards	15
3.2.4. 35 IAC Part 216 – Carbon Monoxide Standards	16
3.2.5. 35 IAC Part 217 – Nitrogen Oxide Standards	16
3.2.6. 35 IAC Part 218 - Volatile Organic Matter Standards	16
ATTACHMENT A	1
ATTACHMENT B	2
ATTACHMENT C	2

LIST OF FIGURES

Figure 1.2-1. Proposed East Balt Bakery Flow Diagram	
Figure 1.2-2. East Balt Bakery Site Plan	
Figure 1 2-3 Fast Balt Bakery Aerial Man.	

LIST OF TABLES

Table 2.2-1 Project Emissions	10
Table 2.2-2 Facility-Wide Potential Emissions	11

East Balt Commissary, LLC (East Balt) is submitting this construction permit application to request approval to construct one (1) Catalytic Oxidizer to control Bakery Lines #1 and #2 (with Ovens), which are located at 1801 West 31st Place, Chicago, Illinois 60608 (East Balt Bakery). The Catalytic Oxidizer does not meet any of the categorical exemptions in Title 35 of the Illinois Administrative Code, Section 201.146 (35 IAC 201.146). Specifically, 35 IAC 201.146(jj) does not apply because the Catalytic Oxidizer is not used to control equipment that is exempt from permitting. Further, 35 IAC 201.146(hhh)(2) does not apply as this control equipment is considered part of the original Bakery Line #1 installation project and therefore the addition of air pollution control equipment is not to existing emission units. As such, a construction permit is required pursuant to 35 IAC 201.142. Additional details are provided in this application regarding the proposed new control equipment at the East Balt Bakery.

1.1. EXISTING SOURCE DESCRIPTION

The East Balt Bakery produces yeast-leavened breads, buns and muffins. Significant emission units at the source include two (2) bun lines (Bakery Line #1 and Bakery Line #2), each with an oven, identified as emission unit 01 and 02, respectively, and one (1) griddle with an oven, identified as emission unit 03. Additional insignificant activities, including, but not limited to, natural gas-fired boilers, heaters, storage silos, and a flour unloading system are also included in the current CAAPP permit. The East Balt Bakery is currently considered a major source of volatile organic material (VOM) emissions with a source-wide VOM emission limit of 200 tons per year (tpy) under the Title V operating permit program. As such, the existing facility operates under the Clean Air Act Permit Program (CAAPP) Permit No. 96030148, which was issued by the Illinois Environmental Protection Agency (IEPA) on August 30, 2004. The CAAPP permit establishes emissions based on natural gas consumption and the amount of baked bread produced. Emissions from the three emission units were originally permitted without control equipment.

The bakery lines are highly automated, where all the mixing, blending, working and dividing are interconnected by a conveyor serving the process. Bread and bread products consist of four main ingredients: flour, water, yeast and salt. Other physical properties of the product are obtained by adding ingredients such as sweeteners, shortening, enzymes, and preservatives. Flour, the main ingredient, is stored in silos and is conveyed through pipes to batch weighers, after which water, yeast, and other ingredients are added in a mixer.

After mixing, the dough is placed in large tubs and kept in a room where the temperature and humidity are closely controlled to allow the fermentation process to occur. During this process, the yeast reproduces under aerobic conditions forming carbon dioxide gas (49 percent), an almost equivalent amount of liquid ethanol (47 percent) and a small amount (about 4 percent) of other various compounds. With some recipes, additional ingredients including yeast and flour are added after fermentation. In these cases, the initial mix is called a 'sponge,' with the extra ingredients referred to as a 'spike' and the final mixed product called 'dough.'

After fermentation, the dough is placed in a mixer where the minor ingredients are added. The dough is then conveyed through a divider, rounded, dusted with flour, and placed into pans where they are conveyed into a proof box. The proof box is a well-insulated chamber, free of drafts where the time, temperature, and humidity are controlled. These conditions allow the dough to rise again by accelerating the yeast activity. A minor amount of the ethanol is liberated in the proof boxes; however, the exhausts from these chambers are minimized to preserve temperature and humidity conditions. Therefore, ethanol (VOM) emissions from the proof box are considered insignificant.

After proofing, the pans are conveyed into baking ovens. The ovens combust natural gas exclusively and have firing rates that exceeds 0.3 million British thermal units per hour (MMBtu/hr), but are less than 10 MMBtu/hr. During the baking process, the yeast suffers a thermal death, and no further gases are created. Approximately 50 percent of the liquid ethanol produced during fermentation is vaporized during the baking process. The baking process is complete when the internal temperature of the loaf reaches the boiling point of ethanol. After baking, the loaf is removed from the pan and is allowed to cool prior to packaging.

1.2. PROJECT DESCRIPTION

In response to recent performance testing conducted at the East Balt Bakery, as requested in a Section 114 letter from the United States Environmental Protection Agency (USEPA), East Balt intends to enter into a Consent Decree agreement regarding alleged violations of the Clean Air Act (CAA). East Balt recognizes that the Consent Decree will contain allegations that the East Balt Bakery should have triggered Major Source Non-Attainment New Source Review (NANSR) for VOM emissions during the installation of the new Bakery Line #1 oven in 1995 based on the VOM emission rate obtained during performance testing conducted on September 20 and 21, 2011. As required under Major Source NANSR regulations, East Balt must obtain a construction permit prior to installing a control device to limit VOM emissions from Bakery Line #1. This application requests the necessary construction permit required to satisfy this requirement.

Further, these regulations require the application to contain a demonstration that the control technology to be used to control VOM emissions meets the standard of the Lowest Achievable Emissions Rate (LAER) as well as an Alternatives Analysis to demonstrate why the facility must be located in the non-attainment area. This analysis can be found in Attachment C. It is important to note that East Balt is voluntarily installing LAER-compliant VOM emission controls on Bakery Line #2 in addition to Bakery Line #1. East Balt anticipates the addition of the control device on Bakery Line #2 will serve as a supplemental environmental project (SEP) as part of the enforcement settlement with USEPA and IEPA.

The process flow diagram for the Bakery Lines #1 and #2 (with Ovens), with proposed Catalytic Oxidizer, are illustrated in Figure 1.2.-1. The East Balt Bakery site plan and layout are displayed in Figure 1.2-2 and Figure 1.2-3, respectively.

CO, PM, NOx, SO2, VOM, HAP

Figure 1.2-2. East Balt Bakery Site Plan

East Balt Commissary, Inc. | 131401.0127 Trinity Consultants

PAGE 8

East Balt Commissary, Inc. | 131401.0127 Trinity Consultants This section documents the predicted emission rate changes associated with the proposed addition of control equipment to Bakery Lines #1 and #2 (with Ovens) and the combined total emissions for the East Balt Bakery. Detailed emissions calculations are included in Attachment A of this submittal.

2.1. EMISSION CALCULATION METHODOLOGY

The CAAPP Permit establishes emissions based on oven natural gas consumption using AP-42 natural gas emission factors and the amount of baked bread produced using Volatile Organic Material (VOM) emission factors derived from the equation provided in "Alternative Control Technology Document for Bakery Oven Emissions (USEPA 453/R-92-017, 12/1992) for yeast-raised bread baking point sources.¹

Emission methodologies used to determine project and facility-wide emissions from Bakery Lines #1 and #2 (with Ovens) utilized stack tested VOM emission factors and applied capture and control efficiencies. Specifically, the three-run average VOM emission rates from the stack test conducted in September 2011 were multiplied by Bakery Lines #1 and #2 (with Ovens) annual maximum production of baked bread. A conservative capture efficiency of 75 percent and a manufacturer guaranteed control efficiency of 95 percent were applied to Bakery Lines #1 and #2 (with Ovens) uncontrolled emissions. Additionally, the three-run average VOM emission rate for East Balt Bakery's Griddle (with Oven), obtained from a June 2011 stack test, was used to determine VOM emissions from the Griddle in the facility-wide emissions analysis. (Note that no capture or control efficiency was applied to the emissions from the Griddle, as the Griddle exhaust is not routed to the proposed Catalytic Oxidizer).

Emission methodologies used to determine project and facility-wide natural gas emissions from Bakery Lines #1 and #2 (with Ovens) and Griddle (with Oven) are consistent with the CAAPP Permit. Similar calculation methodologies were used to calculate the emissions from the natural gas consumption by the proposed Catalytic Oxidizer.

2.2. PROJECT EMISSIONS

As stated previously, the installation of the Catalytic Oxidizer is part of the 1995 Bakery Line #1 Oven replacement. As such, Project Emissions include the emissions associated with Bakery Line #1 and the Catalytic Oxidizer only. As discussed in Section 2.1, the natural gas emissions from Bakery Lines #1 (with Oven) were calculated consistent with the methodologies outlined in East Balt Bakery's CAAPP permit. Further, the annual baked bread throughput remained the same. However, a revised VOM emission factor was employed to determine project emissions from baking bread. Further, a capture efficiency and control efficiency were applied to the uncontrolled emissions from Bakery Line #1 to determine the fugitive VOM emissions and controlled VOM emissions. Additionally, natural gas emissions were calculated emissions associated with the project are the emissions associated with adding the Catalytic Oxidizer. A summary of the project emissions is presented in Table 2.2-1.

		Pollutants Emissions (tpy)						
]	PM/PM ₁₀ /				Max Individual
Emission Unit	NO _x	CO	SO_{X}	PM _{2.5}	VOM	CO ₂ e	Total HAP	HAP (Hexane)
Bakery Line #1 (with Oven)	2.46	0.52	0.01	0.19	5.45	2,974.49	0.05	0.04
+ Fugitive	* .				36.32			
Catalytic Oxidizer	0.72	0.61	0.00	0.05	0.04	872.97	1,36E-02	1.36E-02
Total:	3.19	1.12	0.02	0.24	41.81	3,847.46	0.06	0.06

Table 2.2-1 Project Emissions

¹ USEPA VOM emission factors based on recommendation in AP-42 Chapter 9.9.6 Bread Baking.

Additionally, the natural gas emissions from Bakery Line #2 (with Oven) and Griddle (with Oven) were calculated consistent with the methodologies outlined in East Balt Bakery's CAAPP permit, following the applicable formulas found in AP-42. Further, the annual baked bread throughput, used to determine emissions from baking bread, remained the same. However, revised VOM emission factors were employed to determine facility-wide annual emissions from baking bread on the two lines. Further, a capture efficiency and Catalytic Oxidizer control efficiency were applied to the uncontrolled emissions from Bakery Line #2 to determine the fugitive VOM emissions and controlled VOM emissions. (Note that no capture or control efficiency was applied to emissions from Griddle, with Oven, as it will not be tied to the Catalytic Oxidizer.) Facility-wide emissions for the East Balt Bakery are presented in Table 2.2-2.

Table 2.2-2 Facility-Wide Potential Emissions

2		Pollutants Emissions (tpy)						
				PM/PM ₁₀ /				Max Individual
Emission Unit	NOx	CO	SO_X	PM _{2.5}	VOM	CO ₂ e	Total HAP	HAP (Hexane)
Bakery Line #1 (with Oven)	2.46	0.52	0.01	0.19	5.45	2,974.49	0.05	0.04
+ Fugitive		4			36.32	, 1		
Bakery Line #2 (with Oven)	4.91	1.03	0.03	0.37	7.04	5,922.55	0.09	0.09
+ Fugitive					46.96		and the first	
Catalytic Oxidizer	0.72	0.61	4.34E-03	0.05	0.04	872.97	1.36E-02	1.36E-02
Griddle (with Oven)	1.53	0.32	0.01	0.12	27.17	1,850.80	0.03	0.03
Total:	9.63	2.48	0.06	0.73	122.98	11,620.80	0.18	0.17

As seen above, facility-wide VOM emissions are above major source thresholds. As such, East Balt Bakery maintains its major source status and will continue to operate under Illinois' CAAPP.

This section includes a discussion of potentially applicable state and federal air quality regulations for the East Balt Bakery.

3.1. FEDERAL AIR REGULATIONS

3.1.1. Prevention of Significant Deterioration (PSD)

The East Balt Bakery is located in Cook County, which is designated as "in attainment" for sulfur dioxide (SO₂), nitrogen dioxide (NO₂), carbon monoxide (CO), and particulate matter smaller than 10 microns (PM₁₀) per 40 CFR 81.314. The East Balt Bakery is currently not a major source of NO₂, PM₁₀, SO₂, CO emissions, or greenhouse gas (GHG) emissions. Furthermore, as seen from Table 2.1-1 the project emissions are less than the PSD major source threshold of 250 tpy for NO₂, PM₁₀, SO₂, and CO (note that the East Balt Bakery is not on the "List of 28") and less than 100,000 tpy for GHGs. Therefore, the proposed project does not trigger PSD review.

3.1.2. Non-Attainment New Source Review (NANSR)

As previously stated, the East Balt Bakery is located in Cook County, which is part of the Chicago area marginal 8-hour ozone non-attainment area and the Chicago area non-attainment area for particulate matter smaller than 2.5 microns (PM2.5). The East Balt Bakery is a major source of VOM emissions and a minor source of NOx, PM2.5 and SO2 emissions. As discussed in Section 1.2, East Balt intends to enter into a Consent Decree that is expected to allege that the East Balt Bakery should have triggered Major Source Non-Attainment New Source Review (NANSR) for VOM emissions during the installation of the new Bakery Line #1 oven in 1995. This was determined based on the VOM emission rate obtained during the recent performance testing. A project emissions analysis is required to determine whether the proposed project results in an increase of these pollutants that is "significant", thereby requiring a full NA NSR permitting process. As shown in Table 2.1-1 of this application, the total project emissions increases associated with the 1995 installation of Bakery Line #1 oven and the proposed Catalytic Oxidizer on Bakery Lines #1 and #2 exceed the NSR significant emission rates of 40 tpy for VOM. (Note that NSR significant emission rates of 100 tpy for NOx, 100 tpy for PM2.5 and 100 tpy for SO2 were not exceeded.) Therefore, this project is a major modification for the purposes of NA NSR.

3.1.3. New Source Performance Standards (NSPS)

The NSPS rules, which are located in 40 CFR Part 60, require new, modified, or reconstructed sources to control emissions to the level achievable by the best-demonstrated technology as specified in the applicable provisions. The following is an evaluation of potentially applicable NSPS regulations.

3.1.3.1. 40 CFR Part 60 Subpart Db, New Source Performance Standards (NSPS) for Industrial-Commercial-Institutional Steam Generating Units and 40 CFR Part 60 Subpart Dc, NSPS for Small Industrial-Commercial-Institutional Steam Generating Units

NSPS Subpart Db applies to steam generating units with a maximum design heat input capacity greater than 100 MMBtu/hr. Similarly, NSPS Subpart Dc applies to steam generating units with a maximum design heat input capacity between 10 MMBtu/hr and 100 MMBtu/hr (inclusive). Bakery Lines #1 and #2 Ovens do not produce steam and are therefore not subject to NSPS Subparts Db or Dc. Further, Bakery Line #1 Oven has a design heat input capacity less than 10 MMBtu/hr.

3.1.4. National Emission Standards for Hazardous Air Pollutants (NESHAP)

The NESHAP rules, which are located in 40 CFR Part 61 and 63, require HAP emitters to control emissions to the level achievable by the best available control technology as specified in the applicable provisions. The source-wide potential individual and combination HAP emissions will be below major source thresholds, as seen in Table 2.2-2. Therefore, the East Balt Bakery is an area source of HAPs. The following is an evaluation of potentially applicable NESHAP regulations.

3.1.4.1. 40 CFR Part 63 Subpart JJJJJJ, National Emission Standards for Hazardous Air Pollutants (NESHAP) for Industrial, Commercial, and Institutional Boilers Area Sources

The East Balt Bakery is not a major source of HAPs and thus the Bakery Lines #1 and #2 Ovens are potentially subject to 40 CFR 63 Subpart JJJJJJ, National Emission Standards for Hazardous Air Pollutants for Industrial, Commercial, and Institutional Boilers located at Area Sources. Per 40 CFR 63 Subpart JJJJJJ, the Ovens meet the definition of process heaters as they are designed to transfer heat indirectly to the process material, instead of generating steam like a boiler. The Ovens on Bakery Lines #1 and #2 are therefore not considered boilers and are not subject to 40 CFR 63 Subpart JJJJJJ.

3.2. STATE AIR REGULATIONS

3.2.1. State Permit Requirements

As stated previously, the new Catalytic Oxidizer does not meet any categorical construction permitting exemptions included in 35 IAC 201.146. As such, a construction permit is required pursuant to 35 IAC 201.142. The completed construction permit application forms are included in Attachment A.

As addressed earlier, the East Balt Bakery is a major source and will submit the necessary operating permit application within one (1) year of construction of the new Catalytic Oxidizer, to incorporate the control technology.

3.2.2. 35 IAC Part 212 - Particulate Matter Standards

3.2.2.1. 35 IAC 212 Subpart B - Visible Emissions Limitations

All emission units at the East Balt Bakery, including the Bakery Lines #1 and #2 (with Ovens) and associated Catalytic Oxidizer, are subject to the requirement from 35 IAC 212.123 that no emission unit may emit smoke or other particulate matter with opacity greater than 30 percent into the atmosphere. However, short term emissions may have an opacity between 30 and 60 percent as long as the time at the elevated opacity is no more than an aggregate 8 minutes in any 60 minute period, occurring no more than three (3) times in any 24-hour period, subject to restrictions on the number of emission units emitting higher opacity emissions in any 60 minute period.

As seen in the Section 2.1, minimal particulate matter or visible emissions are expected from Bakery Lines #1 and #2 (with Ovens), and the associated Catalytic Oxidizer. The only possible sources of particulate or visible emissions are the batch weighers and mixers where dry ingredients are added on Bakery Lines #1 and #2 (with Ovens) and the combustion of natural gas at the Catalytic Oxidizer. Note that Bakery Lines #1 and #2, including batch weighers and mixers, are located indoors. Visible emissions are not expected, given the nature of these operations. Further, based on its size, the Catalytic Oxidizer's exhaust will comply with the opacity requirements of 35 IAC 212.123.

3.2.2.2. 35 IAC 212 Subpart E - PM Emissions from Fuel Combustion Emission Units

Subpart E provides particulate matter emission limits for various fuel combustion emission units. Based on the definitions in 35 IAC 211.5190 and 35 IAC 211.2470, the ovens associated with Bakery Lines #1 and #2 are potentially

² Major source thresholds for Individual HAP and Combination HAP emissions are 10 tons per year and 25 tons per year, respectively.

subject to these provisions. However, this Subpart addresses only fuel combustion emission units that are fired with solid fuel or liquid fuel. Because the ovens associated with Bakery Lines #1 and #2 are natural gas-fired sources, each is exempt from the requirements of Subpart E.

3.2.2.3. 35 IAC 212 Subpart K - Fugitive Particulate Matter

All emission units at the East Balt Bakery, including the Bakery Lines #1 and #2 (with Ovens) and associated Catalytic Oxidizer, are subject to the requirement from 35 IAC 212.301 that prohibits fugitive particulate matter beyond the property line except during periods at which the wind speed exceeds 40.2 kilometers per hour (25 miles per hour), as provided in 35 IAC 212.314.3 As noted above, the project to install the Catalytic Oxidizer involves primarily VOM emission sources. The only potential sources of fugitive particulate matter are the batch weighers and mixers, when dry ingredients are added Note that dry raw materials are added inside a building, the dry material is added to a liquid, and the dry material is generally course/granular in nature. As such, East Balt Bakery will be able to comply with the fugitive particulate matter prohibition.

Subpart K also contains provisions related to fugitive particulate matter in certain geographic areas within Illinois. This rule requires special handling of roadways within the facility, and preparation and submittal of a written operating program. The East Balt Bakery is located in Cook County, and this is one of the subject counties identified in 35 IAC 212.302. As such, East Balt Bakery is subject to maintaining and following a site-specific Operating Program. East Balt Bakery's Operating Program contains the minimum requirements outlined in 35 IAC 212.310, in addition to the requirements outlined in 35 IAC 212.304 through 35 IAC 212.308, as applicable.

Specifically, 35 IAC 212.304 requires that all storage piles with uncontrolled emissions of fugitive particulate matter in excess of 50 tons per year are covered, sprayed with a surfactant solution or water, or treated by an equivalent method. As seen in Table 2.2-2, Bakery Lines #1 and #2 (with Ovens), and the associated Catalytic Oxidizer, are not expected to emit particulate matter. As such, 35 IAC 212.304 does not apply. Further, 35 IAC 212.305 requires that all conveyor loading operations to aforementioned storage piles must utilize spray systems, telescopic chutes, stone ladders, or other equivalent methods pursuant to 35 IAC 212.305. Because the East Balt Bakery does not have storage piles subject to 35 IAC 212.304, 35 IAC 212.305 does not apply.

35 IAC 212.306 requires that all normal traffic pattern roads and parking facilities which are located on manufacturing property shall be paved or treated with water, oils or chemical dust suppressants. Further, the regulation requires all paved areas to be cleaned on a regular basis and all areas treated with water, oils or chemical dust suppressants to be applied on a regular basis, in accordance with East Balt's Operating Program.

In addition, 35 IAC 212.308 provisions require the conveyor transfer points, conveyors and storage bin operations of Bakery Lines #1 and #2 to be sprayed with water or a surfactant solution, utilize choke-feeding or be treated by an equivalent method in accordance with an operating program. Note that East Balt Bakery's Operating Program does not include details on the material collected by pollution control equipment pursuant to 35 IAC 212.307 since the proposed control equipment employed at the East Balt Bakery is not a baghouse. As such, the no material is collected which would require unloading or transporting. Note that the provisions of 35 IAC 212.3014 through 35 IAC 212.310 are not required during periods at which the wind speed exceeds 40.2 kilometers per hour (25 miles per hour), pursuant to 35 IAC 212.314.4 East Balt Bakery amends and resubmits said Operating Program, as necessary, to maintain a current program pursuant to 35 IAC 212.312.

³ Determination of wind speed shall be by a one-hour average or hourly recorded value at the nearest official station of the U.S. Weather Bureau or by wind speed instruments operated on the site. In cases where the duration of operations subject to this rule is less than one hour, wind speed may be averaged over the duration of the operations on the basis of on-site wind speed instrument measurements.

⁴ Determination of wind speed shall be by a one-hour average or hourly recorded value at the nearest official station of the U.S. Weather Bureau or by wind speed instruments operated on the site. In cases where the duration of operations subject to this rule is less than one hour, wind speed may be averaged over the duration of the operations on the basis of on-site wind speed instrument measurements.

Subpart K also contains additional emission limitations for emission units in certain areas, specifically the areas defined in 35 IAC 212.324(a)(1)(A) – (C). The area defined by 35 IAC 212.324(a)(1)(A) is the McCook vicinity in Cook County, bound by lines from Universal Transmercator (UTM) coordinate 428000 meters East (mE), 4631000 meters North (mN), east to 435000 mE, 4631000 mN, south to 435000 mE, 4623000 mN, west to 428000 mE, 4623000 mN, north to 428000 mE, 4631000 mN. The area defined by 35 IAC 212.324(a)(1)(B) is the Lake Calumet vicinity in Cook County, bound by lines from UTM coordinate 445000mE, 4622180mN, east to 456265mE, 4622180mN, south to 456265E, 4609020N, west to 445000mE, 4609020mN, north to 445000mE, 4622180mN. The area defined by 35 IAC 212.324(a)(1)(C) is the Granite City vicinity in Madison County, bound by lines from UTM coordinate 744000mE, 4290000mN, east to 753000mE, 4290000mN, south to 753000mE, 4283000mN, west to 744000mE, 4283000mN, north to 744000mE, 4290000mN. The East Balt Bakery is located at UTM coordinate 444322mE and 4631874mN, and is therefore not located within any of the three defined areas or subject to the limits in Subpart K.

3.2.2.4. 35 IAC 212 Subpart L - PM Emissions from Process Emission Units

All process emission units at the East Balt Bakery are potentially subject to the requirements of 35 IAC 212.321, which establishes an allowable hourly PM emission rate based on the raw material processing rate of the equipment. The Bakery Lines #1 and #2 (with Ovens), and associated Catalytic Oxidizer, are considered process emission units. Note that the ovens associated with Bakery Lines #1 and #2 are not considered process emission units, but rather fuel combustion emission units, based on the definitions in 35 IAC 211.5190 and 35 IAC 211.2470. The Bakery Lines #1 and #2, and associated Catalytic Oxidizer, process approximately 3.28 tons/hour, 2.63 tons/hour, and of raw materials (based on expected batch size and batch cycle time). Using the equation found in 35 IAC 212.321(b), the allowable PM emission rate is 4.79 lb/hr and 4.26 lb/hr for Bakery Lines #1 and #2, respectively. Given the nature of the dry material addition operations (as described above), PM emissions from Bakery Lines #1 and #2 (with Ovens), and the associated Catalytic Oxidizer, are negligible and will comply with this limit.

3.2.2.5. 35 IAC 212 Subpart N - Food Manufacturing

Subpart N of 35 IAC 212 limits PM and PM₁₀ emissions from food manufacturing facilities, and thus are potentially applicable to the operations at the East Balt Bakery. Specifically, 35 IAC 212.361 limits PM emissions from corn wet milling processes, 35 IAC 212.362(b)(1) – (4) limits PM₁₀ emissions from food manufacturing facilities located in the area defined in 35 IAC 212.324(a)(1)(A) and 35 IAC 212.361(b)(5) limits PM₁₀ emissions from a tea manufacturing facility in Granite City. As stated previous, the East Balt Bakery produces yeast leavened products such as breads, buns, and other miscellaneous bakery products and is therefore not subject to the limits in 35 IAC 212.361 or 35 IAC 212.361(b)(5). Further, the East Balt Bakery is located at UTM coordinate 444322mE and 4631874mN, and is therefore not located within the area defined by 35 IAC 212.324(a)(1)(A) or subject to the limits in 35 IAC 212.362(b)(1) – (4).

3.2.3. 35 IAC Part 214 - Sulfur Dioxide Standards

3.2.3.1. 35 IAC 214 Subparts B, C and D - Fuel Combustion Emission Sources

Subparts B, C and D of 35 IAC 214 limit SO₂ emissions from fuel combustion emission sources, and thus are potentially applicable to each of the ovens associated with Bakery Lines #1 and #2. However, these Subparts address only fuel combustion emission units that are fired with solid fuel or liquid fuel. Because the ovens associated with Bakery Lines #1 and #2 are natural gas fired sources, each is exempt from these SO₂ emission limits.

3.2.3.2. 35 IAC 214 Subpart K - Process Emission Sources

Subpart K of 35 IAC 214 includes a general provision (35 IAC 214.301) limiting SO_2 emissions to 2,000 ppm from process emission sources. The ovens associated with Bakery Lines #1 and #2 may emit minimal amounts of SO_2 , but are fuel combustion emission units and thus are not subject to this requirement. Furthermore, Bakery Lines #1 and #2 are not be using any sulfur-containing raw materials and thus no process-related SO_2 emissions are expected from

the Catalytic Oxidizer. Note that the Catalytic Oxidizer will combust minimal amounts of sulfur contained in the natural gas fuel. Since natural gas is inherently low in sulfur, the Catalytic Oxidizer will comply with 35 IAC 214.301.

3.2.4. 35 IAC Part 216 - Carbon Monoxide Standards

3.2.4.1. 35 IAC 216 Subpart B - Fuel Combustion Emission Sources

Fuel combustion emission sources throughout Illinois are subject to the general CO emission standard found in 35 IAC 216.121. This rule limits CO emissions from any fuel combustion unit rated more than 10 MMBtu/hr to not more than 200 ppm CO (corrected to 50 percent excess air). The oven associated with Bakery Line #1 is rated less than 10 MMBtu/hr, and thus are not subject to this rule. However, the oven associated with Bakery Line #1 is rated at 11.2 MMBtu/hr and is therefore subject to this rule. Bakery Line #1 oven will comply with 35 IAC 216.121 by ensuring proper combustion is achieved.

3.2.5. 35 IAC Part 217 - Nitrogen Oxide Standards

3.2.5.1. 35 IAC 217 Subparts C and F - Fuel Combustion Emission Sources

Subpart C of 35 IAC 217 limits NOx emissions from existing fuel combustion emission units in the Chicago area that are rated at 250 MMBtu/hr or greater. The ovens associated with Bakery Lines #1 and #2 are rated less than 10 MMBtu/hr. As such, the ovens are not subject to Subpart C.

Additionally, Subpart F limits NOx emissions from process heaters that meet the criteria identified in 35 IAC 217.150. 35 IAC 217.150 specifies that the requirements apply at facilities in the Chicago area that have the potential to emit at least 100 tpy of NOx emissions and where the individual process heater has the potential to emit at least 15 tons/year of NOx (and 5 tons of NOx per summer ozone season). The current CAAPP permit for the East Balt Bakery indicates that the site is not a major source of NOx emissions, although the individual emissions from each oven associated with Bakery Lines #1 and #2 are greater than 15 tons/year. This status remains accurate as seen in Table 2.2-2. As such, the ovens associated with Bakery Lines #1 and #2 are not subject to the NOx limitations of Subpart F.

3.2.6. 35 IAC Part 218 - Volatile Organic Matter Standards

3.2.6.1. 35 IAC 218 Subpart C - Organic Emissions from Miscellaneous Equipment

The provisions in 35 IAC 218.142 limit the volume of organic liquid leaks from pumps and compressors if the liquid has a vapor pressure of 2.5 psia or greater at 70 °F. Bakery Lines #1 and #2 processes, discussed in detail in Section 1.1, do not involve volatile organic liquids. As such, 35 IAC 218.142 does not apply to the East Balt Bakery.

3.2.6.2. 35 IAC 218 Subpart E - Solvent Cleaning

In January 2012, IEPA added regulations in 35 IAC 218.187 addressing industrial solvent cleaning operations. Per 35 IAC 218.187(a)(1), the rule applies to cleaning operations that use organic materials that emit, in the absence of air pollution control equipment, more than 500 lbs per month of VOM (facility-wide, from all such cleaning operations). The cleaning operations considered by the rule include equipment cleaning, line cleaning, and tank cleaning. Given the low contamination risk between baked bread products, East Balt does not perform solvent cleaning on Bakery Lines #1 and #2 equipment. As such, the East Balt Bakery is not subject to this rule.

3.2.6.3. 35 IAC 218 Subpart G - Use of Organic Material

The provisions of 35 IAC 218 Subpart G state that no emission unit can emit more than 8 lbs/hr of organic emissions to the atmosphere unless the emissions are controlled per 35 IAC 218.302. As noted previously, all emissions from Bakery Lines #1 and #2 will vent to the proposed Catalytic Oxidizer. As such, VOM emissions from Bakery Lines #1 and #2 will not exceed 8 lb/hr.

3.2.6.4. 35 IAC 218 Subpart V - Batch Operations

The provisions of 35 IAC 218 Subpart V apply to process vents associated with batch operations at sources with several specifically listed four-digit standard industrial classification (SIC) codes. The current CAAPP permit for the East Balt Bakery indicates an SIC code of 2051 is most applicable to the site. This is not one of the listed SIC codes in 35 IAC 218.500(a)(1), although the East Balt Bakery operations will be batch operations. Therefore, Subpart V control requirements in 35 IAC 218.501 will not apply to the East Balt Bakery operations per 35 IAC 218.500(a)(1).

3.2.6.5. 35 IAC 218 Subpart TT - Other Emission Units

35 IAC Part 218, Subpart TT includes general emission limitations for other emission units not covered by another specific Illinois control requirement in Part 218. To be subject to this rule, organic emissions from equipment at the facility that is unregulated by various other Part 218 subparts must exceed the thresholds described in 218.980(a)(1) or (b)(1). East Balt meets the maximum theoretical emission threshold in 218.980(a)(1). Therefore, emission units at the facility may be subject to Subpart TT.

Pursuant to 218.980(a)(2), if the emission threshold in 218.980(a)(1) is met, then Subpart TT applies to "VOM emission units which are not included within any of the categories specified in Subparts B, E, F, H, Q, R, S, T, V, X, Y, Z, AA, BB, PP, QQ, or RR" of Part 218. As noted previously, Bakery Lines #1 and #2 (with Ovens) and associated Catalytic Oxidizer at the East Balt Bakery are not subject to any other Part 218 Subpart. As such, the provisions of Subpart TT apply. However, 35 IAC 980(f) states that the control requirements in Subpart TT shall not apply to bakeries. As such, the East Balt Bakery is not subject to Subpart TT.

⁵ 35 IAC 218.500(a)(1) identifies SIC codes 2821, 2833, 2834, 2861, 2865, 2869, and 2879, as defined in the 1987 edition of the Federal Standard Industrial Classification Manual.

CAAPP Forms

199-CAAPP - Construction Permit Application for a Proposed Project at a CAAPP Source

197-CAAPP - Fee Determination for Construction Permit Application

220-Process Emission Unit Data and Information

260-CAAPP – Air Pollution Control Equipment Data and Information

260B-CAAPP - Supplemental Form Air Pollution Control Equipment Afterburner (260B)

Illinois Environmental Protection Agency Division Of Air Pollution Control – Permit Section P.O. Box 19506 Springfield, Illinois 62794-9506

Construction Permit Application for a Proposed Project at a CAAPP Source

For Illinois EPA use only
ID No.:
Appl. No.:
Date Rec'd:
Chk No./Amt:

This form is to be used to supply general information to obtain a construction permit for a proposed project involving a Clean Air Act Permit Program (CAAPP) source, including construction of a new CAAPP source. Detailed information about the project must also be included in a construction permit application, as addressed in the "General Instructions For Permit Applications," Form APC-201.

	Proposed Project
1. Working Name of Proposed	
3	Ovens) Control Equipment Installation
2. Is the project occurring at a ☐ No ☒ Yes If Yes	source that already has a permit from the Bureau of Air (BOA)? provide BOA ID Number: 0 3 1 6 0 0 F Y B
	est a revision to an existing construction permit issued by the BOA? provide Permit Number:
4. Brief Description of Propos	ed Project:
Installation of control equipme	nt on Bakery Lines #1 and #2 (with Ovens).
	Source Information
1. Source name:* East Balt	Commissary, Inc.
2. Source street address:* 18	801 West 31st Place
3. City: Chicago	4. County: Cook 5. Zip code:* 60608
ONLY COMP	LETE THE FOLLOWING FOR A SOURCE WITHOUT AN ID NUMBER.
Is the source located within If no, provide Township	
7. Description of source and	product(s) produced: 8. Primary Classification Code of source:
Produces breads, buns and no products.	SIC: 2 0 5 1 or NAICS: 3 1 1 8 1 2
9. Latitude (DD:MM:SS.SSS	S): 10. Longitude (DD:MM:SS.SSSS):
41:50:12.47 N	87:40:14.10 W
* Is information different than pre If yes, then complete Form CAAI	vious information? Yes No PP 273 to apply for an Administrative Change to the CAAPP Permit for the source.
	Identification of Domeit Applicant
1 Who is the applicant?	2. All correspondence to: (check one)
1. Who is the applicant? ☐ Owner ☒ Ope	rator Source Owner Operator
3. Applicant's FEIN: 36-2663053	 Attention name and/or title for written correspondence: Mitch Haley, Plant Manager

This Agency is authorized to require and you must disclose this information under 415 ILCS 5/39. Failure to do so could result in the application being denied and penalties under 415 ILCS 5 et seq. It is not necessary to use this form in providing this information. This form has been approved by the forms management center.

	Owner Inform	ation*			
Name: East Balt Commissary	y, Inc.				
2. Address: 1801 West 31st Plac	e				
3. City: Chicago	4. State: IL	·	5. Zip code: 60608		
* Is this information idifferent than pre If yes, then complete Form CAAPP 27	vious information? Type	s 🔯 No rative Change	to the CAAPP Permit for the source.		
il yes, then complete rollin order. 2.	o to apply for an reasonable		to the organ is entirely and estate.		
Operato	r Information (if dif	ferent fron	n owner)*		
1. Name	1 3118 2018 2018 2018 2018				
2. Address:					
	·	•	·		
3. City:	4. State:		5. Zip code: .		
			0. <u>Lip</u> 0000.		
* Is this information different than prev	vious information? Yes	No Changa	t- th- CAADD Dormit for the course		
If yes, then complete Form CAAPP 27	73 то арріу тог ан жиншіны	rative Grange	to the CAAPP Petitit to the source.		
Te	chnical Contacts f	or Applica	tion		
Preferred technical contact: (ch		icant's contac			
Applicant's technical contact p Mitch Haley	erson for application:				
3. Contact person's telephone nu	mber(s)		person's e-mail address:		
(773) 797-9316		mhaley@	eastbalt.com		
Consultant for application: Richard Trzupek	e e				
6. Consultant's telephone numbe	er(s):		int's e-mail address:		
(630) 495-1470		rtrzupek(②trinityconsultants.com		
	•				
Other	Addresses for the	Permit Ap	pplicant		
ONLY COMPLETE	E THE FOLLOWING FOR A S	OURCE WITHO	OUT AN ID NUMBER.		
Address for billing Site Fees for	or the source: So	urce 🗌 (Other (provide below):		
	,				
2. Contact person for Site Fees: 3. Contact person's telephone number:					
4. Address for Annual Emission F	Report for the source:	☐ Source	Other (provide below):		
	·				
5. Contact person for Annual Em	ission Report:	6. Contact	person's telephone number:		

	Review Of Contents of the Application								
	NOTE: ANSWERING "NO" TO THESE ITEMS MAY RESULT IN THE APPLICATION BEING DEEMED INCOMPLETE								
1.	Does the application include a narrative description of the proposed project?	⊠ Yes □ No							
2.	Does the application clearly identify the emission units and air pollution control equipment that are part of the project?	⊠ Yes □ No							
3.	Does the application include process flow diagram(s) for the project showing new and modified emission units and control equipment, along with associated existing equipment and their relationships?	⊠ Yes □ No							
4.	Does the application include a general description of the source, a plot plan for the source and a site map for its location?	Yes No No N/A* * Material previously provided							
5.	Does the application include relevant technical information for the proposed project as requested on CAAPP application forms (or otherwise contain all relevant technical information)?	⊠ Yes □ No							
6.	Does the application include relevant supporting data and information for the proposed project as provided on CAAPP forms?	⊠ Yes □ No							
7.	Does the application identify and address all applicable emission standards for the proposed project, including: State emission standards (35 IAC Chapter I, Subtitle B); Federal New Source Performance Standards (40 CFR Part 60)?	⊠ Yes □ No							
8.	Does the application address whether the project would be a major project for Prevention of Significant Deterioration, 40 CFR 52.21?	⊠ Yes □ No □ N/A							
9.	Does the application address whether the project would be a major project for "Nonattainment New Source Review," 35 IAC Part 203?	⊠ Yes □ No □ N/A							
10.	Does the application address whether the proposed project would potentially be subject to federal regulations for Hazardous Air Pollutants (40 CFR Part 63) and address any emissions standards for hazardous air pollutants that would be applicable?	Yes No N/A* * Source not major Project not major							
11.	Does the application include a summary of annual emission data for different pollutants for the proposed project (tons/year), including: 1) The requested permitted emissions for individual new, modified and affected existing units*, 2) The past actual emissions and change in emissions for individual modified units* and affected existing units*, and 3) Total emissions consequences of the proposed project? (* Or groups of related units)	Yes No N/A * The project does not involve an increase in emissions from new or modified emission units.							
	Does the application include a summary of the current and requested potential emissions of the source (tons/year)?	Yes No N/A* * Applicability of PSD, NA NSR or 40 CFR 63 to the project is not related to the source's emissions.							
	Does the application address the relationships and implications of the proposed project on the CAAPP Permit for the source?	X Yes							
	If the application contains information that is considered a TRADE SECRET, has it been properly marked and claimed and all requirements to properly support the claim pursuant to 35 IAC Part 130 been met? Note: "Claimed" information will not be legally protected from disclosure to the public if it is not properly claimed or does not qualify as trade secret information.	☐ Yes ☐ No ☒ N/A* * No information in the application is claimed to be a TRADE SECRET							
	. Are the correct number of copies of the application provided? (See Instructions for Permit Applications, Form 201)	⊠ Yes □ No							
16	. Does the application include a completed "FEE DETERMINATION FOR CONSTRUCTION PERMIT APPLICATION," Form 197-FEE, a check in the amount indicated on this form, and any supporting material needed to explain how the fee was determined?	⊠ Yes □ No							

		Signatu	ire Blo	ck	•	
Authori	zed Signa	ature:				
the that	statemen	r penalty of law that, based on int ts and information contained in the esponsible official for the source, ct.	is applic	cation are true	e, accurate an	d complete and
BY;	m	Has	 -		Plant Manag	
		AUTHORIZED SIGNATURE			TITLE OF SIGNAT	IURY
		Mitch Haley			20	2013
	TY	PED OR PRINTED NAME OF SIGNATORY			DATE	

Illinois Environmental Protection Agency

Bureau of Air • 1021 North Grand Avenue East • P.O. Box 19506 • Springfield • Illinois • 62794-9506

FEE DETERMINATION FOR CONSTRUCTION PERMIT APPLICATION

	, , , , , , , , ,	FOR AGENCY USE ONLY		
ID Number		Permit #:	n *n	
☐ Compl	ete Incomplete	Date Complete:		
Check Nur		Account Name:		
s form is to be us	ed to supply fee information	that must accompany all cons	struction permit applicatio	ns. This
vironmental Prote	ection Agency, Division of Air (197-INST) for assistance.	emed complete. Make check Pollution Control - Permit Se	ction at the above addres	s. Do NOT send cas
urce Informati	on			
Source Name:	East Balt Commissary, Inc			Participation of the Control of the
Project Name:	Bakery Lines #1-#2 Control		ource ID #: (if applicable)	
Contact Name:	Mitch Haley	5. Co	ontact Phone #: (773) 7	'97-9316
e Determination	on .			*
	r are automatically calculated	i e e e e e e e		
Section 1 Subtot	8	ection 2, 3 or 4 Subtotal	\$500.00 =	\$500.00
Section 1 Subto	αι <u>ψυ.υυ</u> ι υ	Colloit 2, 5 of 4 Oublotti	Ψοσο.σο –	Grand Total
	of Source/Purpose of S			
Your application	will fall under only one of the	following five categories des	cribed below. Check the	box that applies.
Proceed to appli	cable sections. For purpose	s of this form:		16
Major S	ource is a source that is requ	uired to obtain a CAAPP perm	nit.	
		that has taken limits on poter		avoid CAAPP permit
	ents (e.g.,FESOP).	and the same and an passe		
		s not a major or synthetic min	or source.	
		th status change from synthe	tic minor to major source	
	Proceed to Section 2.	a p	D 11 0 1' 4	
		synthetic minor to major sour	rce. Proceed to Section 4	•
New major or	synthetic minor source. Proc	eed to Section 4.		\$0.00
New non-majo	r source. Proceed to Section	า 3.		Section 1 Subto
agency error a	nd if the request is received	st to correct an issued permit within the deadline for a perm Proceed directly to Section 5.		
plication being den	ized to require and you must dis ied and penalties under 415 ILC red by the forms management or	close this information under 415 S 5 ET SEQ. It is not necessary enter.	ILCS 5/39. Failure to do so o to use this form in providing	could result in the this information. This
ction 2: Speci	al Case Filing Fee			
		esses one or more of the fo Section 5. Otherwise, pro		
✓ Addition	or replacement of contro	I devices on permitted unit	s.	
	jects/trial burns by a pern			37
	mediation projects			\$500.00
I I Anote	alation projecto			5 7 - 5 - 7
	na related to methodeless	or timing for emiceion toot	tina	
Revisio	ns related to methodology		ting	*
Revisio	ns related to methodology dministrative-type change		ting	*
Revisio			ting	6

PAGE 23

Section 3: Fees for Current or Projected Non-Major Sources

- This application consists of a single new emission unit or no more than two modified emission units. (\$500 fee)
- This application consists of more than one new emission unit or more than two modified 10. units. (\$1,000 fee)
- This application consists of a new source or emission unit subject to 11. Section 39.2 of the Act (i.e., Local Siting Review); a commercial incinerator or a municipal waste, hazardous waste, or waste tire incinerator; a commercial power generator, or an emission unit designated as a complex source by agency rulemaking. (\$15,000 fee)
- A public hearing is held (see instructions). (\$10,000 fee) 12.
- Section 3 subtotal. (lines 9 through 12 entered on page 1) 13.

13. \$0.00

Section 4: Fees for Current or Projected Major or Synthetic Minor Sources

	14. For the first modified emission unit, enter \$2,000.		
Application contains modified emission units only	15. Number of additional modified emission units = x \$1,000.		•
	16. Line 14 plus line 15, or \$5,000, whichever is less.	16	\$0.00
Application contains	17. For the first new emission unit, enter \$4,000.		
new and/or modified emission units	18. Number of additional new and/or modified emission units = x \$1,000.		
	19. Line 17 plus line 18, or \$10,000, whichever is less.	19	\$0.00
Application contains netting exercise	Number of individual pollutants that rely on a netting exercise or contemporaneous emissions decrease to avoid application of PSD or nonattainment area NSR = x \$3,000.	20.	\$0.00
	21. If the new source or emission unit is subject to Section 39.2 of the Act (i.e. siting); a commercial incinerator or other municipal waste, hazardous waste, or waste tire incinerator; a commercial power generator; or one or more other emission units designated as a complex source by Agency rulemaking, enter \$25,000.		
Additional Supplemental	22. If the source is a new major source subject to PSD, enter \$12,000.		-
Fees	23. If the project is a major modification subject to PSD, enter \$6,000.		20.000
	24. If this is a new major source subject to nonattainment area (NAA) NSR, enter \$20,000.		
	25. If this is a major modification subject to NAA NSR, enter \$25,000.		
	26. If the application involves a determination of MACT for a pollutant and the project is not subject to BACT or LAER for the related pollutant under PSD or NSR (e.g., VOM for organic HAP), enter \$5,000 per unit for which a determination is requested or otherwise required. x \$5,000.	26	\$0.00
	27. If a public hearing is held (see instructions), enter \$10,000.		
28. Section 4 subtota	al (line 16 and lines 19 through 28) to be entered on page1	28.	\$0.00

Section 5: Certification

NOTE: Applications without a signed certification will be deemed incomplete.

29.	I certify	under penalt	y of law that, based	on information and belief formed after reasonable inquiry, the information
	contair	ed in this fee	application form is to	rue, accurate and complete.
	by:	M	Has	Plant Manager
			Signature	Title of Signatory

	Mitch Haley	
Typed	or Printed Name of Signatory	

Title of Oimertens	
Title of Signatory	
11-20-13	

Date	
------	--

Application	Page	
	PAGE Z4	

ILLINOIS ENVIRONMENTAL PROTECTION AGENCY DIVISION OF AIR POLLUTION CONTROL -- PERMIT SECTION P.O. BOX 19506 SPRINGFIELD, ILLINOIS 62794-9506

Revision #:		
Date:	_ /	/
Page	0	f

	FOR AGENCY USE ONLY				
PROCESS EMISSION UNIT	ID NUMBER:				
DATA AND INFORMATION	EMISSION POINT #:				
	DATE:				
SOURCE	INFORMATION				
1) SOURCE NAME:					
East Balt Commissary, Inc.					
DATE FORM PREPARED: September 2013	3) SOURCE ID NO. (IF KNOWN): 031600FYB				
GENERA	LINFORMATION				
4) NAME OF EMISSION UNIT: Bakery Lines #1 and #2 (with Ovens)	,				
5) NAME OF PROCESS:	e à				
Baking					
6) DESCRIPTION OF PROCESS:					
Flour, water, yeast, and salt are mixed, ferme	ented, and baked into bread and bread products				
7) DESCRIPTION OF ITEM OR MATERIAL PRODUCED C	OR ACTIVITY ACCOMPLISHED:				
Baked bread products					
8) FLOW DIAGRAM DESIGNATION OF EMISSION UNIT:					
01 (Bakery Line #1) and 02 (Bakery Line #2)					
9) MANUFACTURER OF EMISSION UNIT (IF KNOWN):					
Sasib Bakery North America Inc. (Bakery Line	e #1) and unknown (Bakery Line #2)				
10) MODEL NUMBER (IF KNOWN):	11) SERIAL NUMBER (IF KNOWN):				
	B092590 (Bakery Line #1) and unknown (Bakery Line #2)				
40) DATES OF COMMENSING CONCEDUCTION	a) CONSTRUCTION (MONTH/YEAR):				
12) DATES OF COMMENCING CONSTRUCTION,	1978 (Bakery Line #1) and 1967 (Bakery Line #2)				
OPERATION AND/OR MOST RECENT MODIFICATIO	1978 (Bakery Line #1) and 1967 (Bakery Line #2)				
	1978 (Bakery Line #1) and 1967 (Bakery Line #2) b) OPERATION (MONTH/YEAR):				
OPERATION AND/OR MOST RECENT MODIFICATIO	b) OPERATION (MONTH/YEAR);				
OPERATION AND/OR MOST RECENT MODIFICATIO	1978 (Bakery Line #1) and 1967 (Bakery Line #2)				
OPERATION AND/OR MOST RECENT MODIFICATIO	b) OPERATION (MONTH/YEAR): 1978 (Bakery Line #1) and 1967 (Bakery Line #2) 1978 (Bakery Line #1) and 1967 (Bakery Line #2)				

THIS AGENCY IS AUTHORIZED TO REQUIRE THIS INFORMATION UNDER ILLINOIS REVISED STATUTES, 1991, AS AMENDED 1992, CHAPTER 111 1/2, PAR. 1039.5. DISCLOSURE OF THIS INFORMATION IS REQUIRED UNDER THAT SECTION. FAILURE TO DO SO MAY PREVENT THIS FORM FROM BEING PROCESSED AND COULD RESULT IN THE APPLICATION BEING DENIED. THIS FORM HAS BEEN APPROVED BY THE FORMS MANAGEMENT CENTER.

APPLICATION PAGE

Printed on Resycled Paper 220-CAAPP

FOR APPLICANT'S USE

14) DOES THE EMISSION UNIT HAV	⁄E MO	RE THAN ONE M	ODE OF (PERATION?		O YE	 S	🛛 ио					
IF YES, EXPLAIN AND IDENTIFY A SEPARATE PROCESS EMISS FOR EACH MODE):	/ WHIC	CH MODE IS COV NIT FORM 220-C/	ERED BY AAPP MU:	THIS FORM ST BE COMPI	(NOTE: LETED								
			•										
						•							
15) PROVIDE THE NAME AND DESI	CNIAT	IONI OE ALL AID I	ONLUTIO	N CONTROL	FOLIDMENT	CONTO	ЭИТИС	THIS					
EMISSION UNIT, IF APPLICABLE MUST BE COMPLETED FOR EA	E (FOF CH ITE	RM 260-CAAPP AI EM OF AIR POLLI	ND THE A	PPROPRIATE	260-CAAPP /	ADDEND	DUM FO	RM					
TO1 (Bakery Line #1) and TO2	2 (Bał	kery Line #2).											
			wy-1 1 mm A 1 A	OMARI E E	POCION			<u> </u>					
16) WILL EMISSIONS DURING STAI RATE PURSUANT TO A SPECIF ESTABLISHED BY AN EXISTING	IC RU	LE, OR THE ALLO	DWABLE !	EMISSION LIN	MIT AS	U YE	S	⊠ NO					
IF YES, COMPLETE AND ATTAC EXCESS EMISSIONS DURING S				T TO OPERA	TE WITH								
17) PROVIDE ANY LIMITATIONS ON	SOU	RCE OPERATION	AFFECT	ING EMISSIO	NS OR ANY W	VORK PE	RACTIC	E					
STANDARDS (E.G., ONLY ONE Bakery Line #1 has a production				ad ner vear									
Dakery Enter #1 has a production		01 20,707 tol	.5 0, 5,0	aa por Jour	•								
		OPERATING	INFOR	ΜΔΤΙΩΝ									
18) ATTACH THE CALCULATIONS,	то тн	E EXTENT THEY	ARE AIR	EMISSION RI	ELATED, FRO	M WHIC	H THË						
FOLLOWING OPERATING INFO	RMAT	ION, MATERIAL (JSAGE IN	FORMATION	AND FUEL US	18) ATTACH THE CALCULATIONS, TO THE EXTENT THEY ARE AIR EMISSION RELATED, FROM WHICH THE FOLLOWING OPERATING INFORMATION, MATERIAL USAGE INFORMATION AND FUEL USAGE DATA WERE BASED AND LABEL AS EXHIBIT 220-1. REFER TO SPECIAL NOTES OF FORM 202-CAAPP.							
19a) MAXIMUM OPERATING HOUR	0												
	\$	HOURS/DAY:		DAYS/WEE	K:	WEEK	S/YEAR	:					
8,760	5	HOURS/DAY: 24		DAYS/WEE	K: 7	WEEK	S/YEAR 52	-					
				DAYS/WEE	7		52 S/YEAR						
8,760		24			7		52						
8,760 b) TYPICAL OPERATING HOURS		24 HOURS/DAY: 24 DEC-FEB(%):	MAR	DAYS/WEE	7 K: 7 JUN-AUG(%	WEEK	52 S/YEAR 52 SEP-N	OV(%):					
8,760 b) typical operating hours 8,760		24 HOURS/DAY: 24	MAR	DAYS/WEE	7 K: 7	WEEK	52 S/YEAR 52 SEP-N	:					
8,760 b) typical operating hours 8,760		24 HOURS/DAY: 24 DEC-FEB(%): 25		DAYS/WEE	7 K: 7 JUN-AUG(% 25	WEEK	52 S/YEAR 52 SEP-N	OV(%):					
8,760 b) typical operating hours 8,760		24 HOURS/DAY: 24 DEC-FEB(%):		DAYS/WEE	7 K: 7 JUN-AUG(% 25	WEEK	52 S/YEAR 52 SEP-N	OV(%):					
8,760 b) typical operating hours 8,760		24 HOURS/DAY: 24 DEC-FEB(%): 25 ATERIAL USA	AGE INF	DAYS/WEE	7 K: 7 JUN-AUG(% 25	WEEK	52 S/YEAR 52 SEP-N	OV(%): 25					
8,760 b) typical operating hours 8,760		24 HOURS/DAY: 24 DEC-FEB(%): 25	AGE INF	DAYS/WEE	7 K: 7 JUN-AUG(% 25	WEEK	52 S/YEAR 52 SEP-N	OV(%): 25					
8,760 b) typical operating hours 8,760	М	24 HOURS/DAY: 24 DEC-FEB(%): 25 ATERIAL USA	AGE INF	DAYS/WEE -MAY(%): 25 ORMATION	7 K: 7 JUN-AUG(% 25	WEEK	52 S/YEAR 52 SEP-N	OV(%): 25					
8,760 b) TYPICAL OPERATING HOURS 8,760 20) ANNUAL THROUGHPUT	М	24 HOURS/DAY: 24 DEC-FEB(%): 25 ATERIAL USA	AGE INF	DAYS/WEE -MAY(%): 25 ORMATION	7 K: 7 JUN-AUG(% 25 V	WEEK	52 S/YEAR 52 SEP-N	OV(%): 25					
8,760 b) TYPICAL OPERATING HOURS 8,760 20) ANNUAL THROUGHPUT 21a) RAW MATERIALS	М	24 HOURS/DAY: 24 DEC-FEB(%): 25 ATERIAL USA	AGE INF	DAYS/WEE -MAY(%): 25 ORMATION	7 K: 7 JUN-AUG(% 25 V	WEEK	52 S/YEAR 52 SEP-N	OV(%): 25					
8,760 b) TYPICAL OPERATING HOURS 8,760 20) ANNUAL THROUGHPUT 21a) RAW MATERIALS	М	24 HOURS/DAY: 24 DEC-FEB(%): 25 ATERIAL USA	AGE INF	DAYS/WEE -MAY(%): 25 ORMATION	7 K: 7 JUN-AUG(% 25 V	WEEK	52 S/YEAR 52 SEP-N	OV(%): 25					
8,760 b) TYPICAL OPERATING HOURS 8,760 20) ANNUAL THROUGHPUT 21a) RAW MATERIALS	М	24 HOURS/DAY: 24 DEC-FEB(%): 25 ATERIAL USA	AGE INF	DAYS/WEE -MAY(%): 25 ORMATION	7 K: 7 JUN-AUG(% 25 V	WEEK	52 S/YEAR 52 SEP-N	OV(%): 25					
8,760 b) TYPICAL OPERATING HOURS 8,760 20) ANNUAL THROUGHPUT 21a) RAW MATERIALS	М	24 HOURS/DAY: 24 DEC-FEB(%): 25 ATERIAL USA	AGE INF	DAYS/WEE -MAY(%): 25 ORMATION	7 K: 7 JUN-AUG(% 25 V	WEEK	52 S/YEAR 52 SEP-N	OV(%): 25					
8,760 b) TYPICAL OPERATING HOURS 8,760 20) ANNUAL THROUGHPUT 21a) RAW MATERIALS	М	24 HOURS/DAY: 24 DEC-FEB(%): 25 ATERIAL USA	AGE INF	DAYS/WEE -MAY(%): 25 ORMATION	7 K: 7 JUN-AUG(% 25 V	WEEK	52 S/YEAR 52 SEP-N	OV(%): 25					

N N			A	.8	
	MAX	IMUM RAT	ES	TYPICA	L RATES
21b) PRODUCTS	LBS/HR		TONS/YEAR	LBS/HR	TONS/YEAR
Baked bread products			53,769		
					1
8 y 1 2					
		$\dashv \vdash$			
		$\dashv \vdash$			
· · · · · · · · · · · · · · · · · · ·					
		IMUM RA		A WAS MARKET	L RATES
21c) BY-PRODUCT MATERIALS	LBS/HR		TONS/YEAR	LBS/HR	TONS/YEAR
None			N/A		
	•				
3					
			GE DATA		
22a) MAXIMUM FIRING RATE (MILLION BTU/HR):		AL FIRING ION BTU/F		c) DESIGN CAPAC RATE (MILLION	I BTU/HR):
5.625 (Bakery Line #1) 11.2 (Bakery Line #2)			kery Line #1) 5.625 (Bakery Line #1) tery Line #2) 11.2 (Bakery Line #2)		
d) FUEL TYPE:					
NATURAL GAS OFU				COAL OTHER_	
IF MORE THAN ONE FUEL IS	USED, ATTACH	AN EXPLA	ANATION AND LA	BEL AS EXHIBIT 220-2	
e) TYPICAL HEAT CONTENT OF BTU/GAL OR BTU/SCF):	FUEL (BTU/LB,		f) TYPICAL SULFUR CONTENT (WT %., NA FOR NATURAL GAS):		
10	000			N/A	
g) TYPICAL ASH CONTENT (W		ATURAL	h) ANNUAL FUEL USAGE (SPECIFY UNITS, E.G.,		
GAS):	/A		SCF/YEAR, GAL/YEAR, TON/YEAR): 49,280,000 scf/yr (Bakery Line #1)		
23) ARE COMBUSTION EMISSION		THE SAME		45,430,000 scf/yr (Bakery I NTROL AS	
PROCESS UNIT EMISSIONS?		001101101	TON EMICCIONO	, –) 123 O NO
IF NO, IDENTIFY THE EXHAU	IST POINT FOR	COMBOSI	ION EMISSIONS:		
<i>"</i>					12. The state of t
a a			*		

ULES	ION(S) SET BY RULE(S) WHICH ARE APPLICABLE TO THIS EMISSION DNIT (E.G., VOM, IAC 218,204(J)(4), 3.3 LBS/GAL). EMISSION STANDARD(S)		ON UNIT: REQUIREMENT(S)		REQUIREMENT(S)	ation Text	III.	REQUIREMENT(S)	THIS EMISSION UNIT: REQUIREMENT(S)	
APPLICABLE RULES	24) PROVIDE ANY SPECIFIC EMISSION STANDARD(S) AND LIMITATION(S) SET BY RULE(S) WHICH (REGULATED AIR POLLUTANT(S) REGULATED AIR POLLUTANT(S)		25) PROVIDE ANY SPECIFIC RECORDKEEPING RULE(S) WHICH ARE APPLICABLE TO THIS EMISSION UNIT: REGULATED AIR POLUTANT(S)	26) PROVIDE ANY SPECIFIC REPORTING RULE(S) WHICH ARE APPLICABLE TO THIS EMISSION UNIT:	REGULATED AIR POLLUTANT(S) REPORTING RULE(S)	Refer to Application	27) PROVIDE ANY SPECIFIC MONITORING RULE(S) WHICH ARE APPLICABLE TO THIS EMISSION UNIT:	REGULATED AIR POLLUTANT(S) MONITORING RULE(S)	28) PROVIDE ANY SPECIFIC TESTING RULES AND/OR PROCEDURES WHICH ARE APPLICABLE TO THIS EMISSION UNIT REGULATED AIR POLLUTANT(S)	

APPLICATION PAGE Printed on Recycled Paper 220-CAAPP

29) DOES THE EMISSION UN	IT QUALIFY FOR AN EXEMPT	TON FROM AN	O YES NO
OTHERWISE APPLICABLE			C TES ES INC
EXEMPTION. PROVIDE A SUPPORTING DATA AND	DETAILED EXPLANATION JU	S EXEMPT AND THE RULE WE JSTIFYING THE EXEMPTION. ND LABEL AS EXHIBIT 220-3, O S EXEMPTION. Refer to Ap	INCLUDE DETAILED
	COMPLIANC	E INFORMATION	
30) IS THE EMISSION UNIT IN REQUIREMENTS?			X YES NO
IF NO, THEN FORM 294-C COMPLYING EMISSION L	AAPP "COMPLIANCE PLAN/S JNITS" MUST BE COMPLETEI	SCHEDULE OF COMPLIANCE O AND SUBMITTED WITH THIS	ADDENDUM FOR NON APPLICATION.
31) EXPLANATION OF HOW I	NITIAL COMPLIANCE IS TO E	BE, OR WAS PREVIOUSLY, DE	MONSTRATED:
Projected annual produc	ction and oven design ca	pacity firing rate were used	to demonstrate
compliance.		200	
	E		
	AC.		
		Y	
** * * *		\$ # #	
32) EXPLANATION OF HOW	ONGOING COMPLIANCE WIL	L BE DEMONSTRATED:	
			the amount of natural gas
consumption will be use	ed to demonstrate complia	ance.	
	8		
M. M			DODTINO
		CORDKEEPING AND REL	S ARE BEING MAINTAINED TO
DETERMINE FEES RUI	I F APPLICABILITY OR COMP	LIANCE. INCLUDE THE UNIT (CY OF SUCH RECORDS (E.G., I	OF MEASUREMENT, THE
PARAMETER	UNIT OF MEASUREMENT	METHOD OF MEASUREMENT	FREQUENCY
Dough Production	Count	Production Records	Monthly
Fuel Usage	Therms	Natural Gas Meter	Monthly
Oven Operating Hours	Hours	Production Records	Monthly
Oven Operating Hours	Tiouis	1 Toduction (Vectorus	- Montany
		8	u pė

RECORDED PARAME	TER INCLUDE THE METHOD	CORDS WILL BE CREATED AND M OF RECORDKEEPING, TITLE OF DNTACT FOR REVIEW OF RECOR	PERSON RESPONSIBLE FOR
PARAMETER	METHOD OF RECORDKEEPING	TITLE OF PERSON RESPONSIBLE	TITLE OF CONTACT PERSON
Dough Production	Automated Production Records	Plant Manager	Plant Manager
Fuel Usage	Utility Bills	Plant Manager	Plant Manager
Oven Operating Hours	Automated Production Records	Plant Manager	Plant Manager
			-
c) IS COMPLIANCE OF TH THE RECORDS?	IE EMISSION UNIT READILY I	DEMONSTRATED BY REVIEW OF	X YES ☐ NO
IF NO, EXPLAIN:	•		
			·
r.			
			•
d) ARE ALL RECORDS RE SUBMITTAL TO THE AC	ADILY AVAILABLE FOR INSP SENCY UPON REQUEST?	PECTION, COPYING AND	X YES NO
IF NO, EXPLAIN:			
			•
			·
			ED DINE ADDITION OF
COMPLIANCE:		IVITIES USED TO DETERMINE FE	
		f oven operating hours, and t	he amount of natural gas
consumption are monit	orea.		
·			
		(E.G., VOM EMISSIONS TO ATM	
The amount of product consumption are monit		f oven operating hours, and t	he amount of natural gas
		•	
c) DESCRIBE THE LOCAT	TION OF EACH MONITOR (E.C	G., IN STACK MONITOR 3 FEET FI	ROM EXIT):
The amount of product	produced is not determine	ned using a monitor.	
The number of oven of The natural gas consu	perating hours is not dete motion is monitored using	ermined using a monitor. g a natural gas meter which i	s common to all natural
gas consumption sour			

34d) IS EACH MONITOR EQUIPPED WI	TH A RECORDING DEVICE?	V V		O YES	Ŋ NO
IF NO, LIST ALL MONITORS WITHOU	T A RECORDING DEVICE:				and the same of th
The amount of product produced is The number of oven operating hou The natural gas consumption is mo recording device.	ırs is not determined usin	g a monitor		quipped with	а
e) IS EACH MONITOR REVIEWED FOR A BASIS?	ACCURACY ON AT LEAST A	QUARTERLY		YES	⊠ NO
IF NO, EXPLAIN:					
The amount of product produced is The number of oven operating hou The natural gas consumption meter East Balt Commissary, Inc.	irs is not determined using	ig a monitor		refore not rev	riewed by
	1				
f) IS EACH MONITOR OPERATED AT A IN OPERATION?	LL TIMES THE ASSOCIATED	EMISSION UN	NIT IS	YES	⊗ NO
IF NO, EXPLAIN:					
The amount of product produced is					
The number of oven operating hou The natural gas consumption is more		· · · · · · · · · · · · · · · · · · ·		naratad at a	Il timos tha
associated emission unit is in oper		jas meter w	11161115	perateu at a	ii unies uie
accordated chinocien anni le in open					a II ii ii
35) PROVIDE INFORMATION ON THE MO PURPOSES OF THE DETERMINATION DATE, TEST METHOD USED, TESTIN SUMMARY OF RESULTS. IF ADDITION	ON OF FEES, RULE APPLICAE NG COMPANY, OPERATING O	BILITY OR COI CONDITIONS I	MPLIANCE EXISTING	E. INCLUDE TI DURING THE	HE TEST
		OPERATIN		9	
TEST DATE TEST METHOD USEPA RM 25A and	TESTING COMPANY Arrow Environmental Consulting, LLC.	CONDITIO Maximum Produc		SUMMARY OF Bakery Line #1: 15.74 lbs	
RM18	Arrow Environmental Consulting, LLC.	Rates		Bakery Line #2; 8,98 lbs	
September 20-21, USEPA RM 25A and RM18	Arrow Environmental Consulting, LLC.	Maximum Produc Rates	ction	Bakery Line #1: 12.36 lbs Bakery Line #2: 7.76 lbs	EtOH/ton baked product EtOH/ton baked product
	2				
				.=	
36) DESCRIBE ALL REPORTING REQUIRES SUBMITTALS TO THE AGENCY:	REMENTS AND PROVIDE THE	E TITLE AND I	FREQUEN	CY OF REPOR	RT .
REPORTING REQUIREMENTS	TITLE OF REPORT			FREQUENCY	
All regulated pollutants	Annual Emissions Rep	oort	Annual		
Compliance Status	Annual Compliance Cert	ification	Annual		36 (8)

			-		(37)Ei	MISSION II	(37)EMISSION INFORMATION	NOI				
			TACTUAL EMISSION RATE UNCONTROLLED EMISSIC	TACTUAL EMISSION RATE TINCONTROLLED EMISSION	IRATE		ALLOW	ABLE BY	ALLOWABLE BY RULE EMISSION RATE	ON RATE	² PERMITTED EMISSION RATE	SION RATE
REGULATED AIR POLLUTANT		LBS PER HOUR (LBS/HR)	TONS PER YEAR (TONS/YR)	³ OTHER TERMS	³ OTHER TERMS	MD4	⁵ RATE	(UNITS)	APPLICABLE RULES	TONS PER YEAR (TONS/YR)	RATE (UNITS)	TONS PER YEAR (TONS/YR)
CARBON	MAXIMUM:											
MONOXIDE (CO)	TYPICAL:							, ,				
LEAD	MAXIMUM:				`		J	î				The state of the s
	TYPICAL:							î				
NITROGEN	MAXIMUM:	-						(
OXIDES (NOX)	TYPICAL:											
PARTICULATE	MAXIMUM:							()				
MATTER (PART)	TYPICAL							()				
PARTICULATE	MAXIMUM:							()				
_	TYPICAL:							()				
SULFUR	MAXIMUM:							^				2.00
DIOXIDE (SO2)	TYPICAL:							^				
VOLATILE ORGANIC	MAXIMUM:	Rei	fer to A	Refer to Attachm	nent A	•					THE PROPERTY OF THE PROPERTY O	
MATERIAL (VOM)	TYPICAL:							Î				
OTHER, SPECIFY:	MAXIMUM:							<u> </u>		:		
	TYPICAL:											
EXAMPLE: PARTICILATE	MAXIMUM:	5.00	21.9	0.3 GR/DSCF		-	6.0 (1.5	6.0 (LBS/HR)	212.321	26.28	5.5 LBS/HR	22
MATTER	TYPICAL:	4.00	14.4	0.24 GR/DSCF		4	5.5 (LE	5.5 (LBS/HR)	212.321	19.80		
				S S S S S S S S S S S S S S S S S S S				,,				

IMPORTANT: ATTACH CALCULATIONS, TO THE EXTENT THEY ARE AIR EMISSIONS RELATED, ON WHICH EMISSIONS WERE DETERMINED AND LABEL AS EXHIBIT 220-5.

1 CHECK UNCONTROLLED EMISSION RATE BOX IF CONTROL EQUIPMENT IS USED, OTHERWISE CHECK AND PROVIDE THE ACTUAL EMISSION RATE TO ATMOSPHERE, INCLUDING INDOORS. SEE INSTRUCTIONS.
2 PROVIDE THE EMISSION RATE THAT WILL BE USED AS A PERMIT SPECIAL CONDITION. THIS LIMIT WILL BE USED TO DETERMINE THE PERMIT FEE.
3 PLEASE PROVIDE ANY OTHER EMISSION RATE WHICH IS COMMONLY USED, REQUIRED BY A SPECIFIC LIMITATION OR THAT WAS MEASURED (E.G. PPM, GR/DSCF, ETC.)
4 DM. - DETERMINATION METHOD: 1) STACK TEST, 2) MATERIAL BALANCE, 3) STANDARD EMISSION FACTOR (AP-42 OR AIRS), 4) ENGINEERING ESTIMATE, 5) SPECIAL EMISSION FACTOR (NOT AP-42 OR AIRS)
5 RATE - ALLOWABLE EMISSION RATE SPECIFIED BY MOST STRINGENT APPLICABLE RULE.

	LE	APPLICABLE RULE											-	3			49		CFR 61	61.302(b),(d)	
	ALLOWABLE BY RULE	⁵ RATE OR STANDARD																	98% by wt control device	leak-tight trucks	
MATION		Σ			- -															2	_
INFORM		4 _{DM}						*											2		
T EMISSION	E SION RATE	³ OTHER TERMS	nment β								THE RESIDENCE OF THE PROPERTY					- Constitution of the Cons					
IR POLLUTAN	☐ 1ACTUAL EMISSION RATE ☐ 1UNCONTROLLED EMISSION RATE	TONS PER YEAR (TONS/YR)	Refer to Attachment A																12	80	2.5
(38) HAZARDOUS AIR POLLUTANT EMISSION INFORMATION	O 1ACTUAL	POUNDS PER HOUR (LBS/HR)	Refer	K															007	0.00	0.0
(38)	e		MAXIMUM:	TYPICAL:	MAXIMUM:	TYPICAL:	MAXIMUM:	TYPICAL:	MAXIMUM:	TYPICAL:	MAXIMUM:	TYPICAL:	MAXIMUM:	TYPICAL:	MAXIMUM:	TYPICAL:	MAXIMUM:	TYPICAL:	MAXIMI M.	TVPICAL	ווווער
		2CAS				2				5 25		7		ı.						74.400	/1432
		NAME OF HAP		e e			The second secon			D		32				3 3 3			1	EXAMPLE:	Benzene /1432

IMPORTANT: ATTACH CALCULATIONS, TO THE EXTE $^{
m N}$ T THEY ARE AIR EMISSIONS RELATED, ON WHICH EMISSIONS WERE DETERMINED AND L $^{
m A}$

²CAS - CHEMICAL ABSTRACT SERVICE NUMBER.
²CAS - CHEMICAL ABSTRACT SERVICE NUMBER.
³PLEASE PROVIDE ANY OTHER EMISSION RATE WHICH IS COMMONLY USED, REQUIRED BY A SPECIFIC LIMITATION OR THAT WAS MEASURED (E.G., PPM, GR/DSCF, ETC.).
⁴DM - DETERMINATION METHOD: 1) STACK TEST, 2) MATERIAL BALANCE, 3) STANDARD EMISSION FACTOR (AP 42 OR AIRS, 4) ENGINEERING ESTIMATE, 5) SPECIAL EMISSION FACTOR (NOT AP 42 OR AIRS).
⁵RATE - ALLOWABLE EMISSION RATE OR STANDARD SPECIFIED BY MOST STRINGENT APPLICABLE RULE.

APPLICATION PAGE
Printed on Recycled Paper
220-CAAPP

	EXHAUST POIN	T INFORMATION		
THIS SECTION SHOULD NOT BE COMPLETED				
39) FLOW DIAGRAM DESIGNATION OF E	XHAUST POINT:			
Catalytic Oxidizer				
40) DESCRIPTION OF EXHAUST POINT (DISCHARGES INDOORS, DO NOT CO	OMPLETE THE REM	OF MONITOR, INDOO IAINING ITEMS.	RS, ETC.). IF THE EXHAUST POINT	
VOM Exhaust to Catalytic Oxid	lizer			
41) DISTANCE TO NEAREST PLANT BOU	INDARY FROM EXH	AUST POINT DISCH	ARGE (FT):	
Refer to 260-CAAPP for Cataly	rtic Oxidizer			
42) DISCHARGE HEIGHT ABOVE GRADE	(FT):			
Refer to 260-CAAPP for Cataly	tic Oxidizer/			
43) GOOD ENGINEERING PRACTICE (GE	P) HEIGHT, IF KNC	OWN (FT):		
Refer to 260-CAAPP for Cataly			·	
44) DIAMETER OF EXHAUST POINT (FT):				
1.128 TIMES THE SQUARE ROOT OF	THE AREA. Ref	fer to 260-CAAPP	for Catalytic Oxidizer	
45) EXIT GAS FLOW RATE	a) MAXIMUM (ACF	·M):	b) TYPICAL (ACFM):	
	Refer to 260-CAAPF	P for Catalytic Oxidizer	Refer to 260-CAAPP for Catalytic Oxidizer	
46) EXIT GAS TEMPERATURE	a) MAXIMUM (°F): Refer to 260-CAAPP for Catalytic Oxidizer By TYPICAL (°F): Refer to 260-CAAPP for Catalytic Oxidizer Refer to 260-CAAPP for Catalytic Oxidizer			
	Refer to 260-CAAPF	of for Catalytic Oxidizer	Refer to 260-CAAPP for Catalytic Oxidizer	
47) DIRECTION OF EXHAUST (VERTICAL		WARD):		
Refer to 260-CAAPP for Cata	ılytic Oxidizer		•	
48) LIST ALL EMISSION UNITS AND CON	ITROL DEVICES SE	RVED BY THIS EXHA	AUST POINT:	
NAME		FLO	W DIAGRAM DESIGNATION	
a) Refer to 260-CAAPP for Cata	ytic Oxidizer	Refer to 260	CAAPP for Catalytic Oxidizer	
b)				
с)				
d)				
e)				
THE FOLLOWING INFORMATION NEED ONLY	BE SUPPLIED IF READ	DILY AVAILABLE. T b) LONGITUDE:		
49a) LATITUDE:		b) EUNGHODE		
	LANGE VEDTICAL	OCRAN.	c) UTM HORIZONTAL (KM):	
50) UTM ZONE:	b) UTM VERTICAL	_ (KM):	C) UTIVI HURIZUNTAL (NIVI).	

ILLINOIS ENVIRONMENTAL PROTECTION AGENCY DIVISION OF AIR POLLUTION CONTROL -- PERMIT SECTION P.O. BOX 19506 SPRINGFIELD, ILLINOIS 62794-9506

Date:	1_		1
Page		of _	

AIR POLLUTION CONTROL EQUIPMENT DATA AND INFORMATION

FOR AGENCY USE C	INLY
ID NUMBER:	
CONTROL EQUIPMENT #:	
DATE:	N N N N N N N N N N N N N N N N N N N

THIS FORM MUST BE COMPLETED FOR EACH AIR POLLUTION CONTROL EQUIPMENT. COMPLETE AND PROVIDE THIS FORM IN ADDITION TO THE APPLICABLE ADDENDUM FORM 260-A THROUGH 260-K. A SEPARATE FORM MUST BE COMPLETED FOR EACH MODE OF OPERATION OF AIR POLLUTION CONTROL EQUIPMENT FOR WHICH A PERMIT IS BEING SOUGHT.

SOURCE	INFORMATION	
1) SOURCE NAME:		
East Balt Commissary, Inc.	N II II	
2) DATE FORM PREPARED: September 2013	3) SOURCE ID NO. (IF KNOWN): 031600FYB	
GENERA	LINFORMATION	

GENERAL IN	NFORMATION
4) NAME OF AIR POLLUTION CONTROL EQUIPMENT AND/O	OR CONTROL SYSTEM:
Catalytic Oxidizer	
5) FLOW DIAGRAM DESIGNATION OF CONTROL EQUIPMENT	NT AND/OR CONTROL SYSTEM:
Oxidizer	
6) MANUFACTURER OF CONTROL EQUIPMENT (IF KNOWN	1):
Catalytic Products International (CPI)	
7) MODEL NUMBER (IF KNOWN): Vector-5	8) SERIAL NUMBER (IF KNOWN): TBD
DATES OF COMMENCING CONSTRUCTION, OPERATION AND/OR MOST RECENT MODIFICATION OF THIS EQUIPMENT (ACTUAL OR PLANNED)	a) CONSTRUCTION (MONTH/YEAR):
V 1000000 V 100000 V 100000 V 100000 V 100000 V 100000 V 1000000 V 100000 V 100000 V 100000 V 100000 V 1000000	b) OPERATION (MONTH/YEAR):
	н
	c) LATEST MODIFICATION (MONTH/YEAR):
	n n
10) BRIEFLY DESCRIBE MODIFICATION (IF APPLICABLE):	
	8
	e e e

THIS AGENCY IS AUTHORIZED TO REQUIRE THIS INFORMATION UNDER ILLINOIS REVISED STATUTES, 1991, AS AMENDED 1992, CHAPTER 111 1/2, PAR. 1039.5. DISCLOSURE OF THIS INFORMATION IS REQUIRED UNDER THAT SECTION. FAILURE TO DO SO MAY PREVENT THIS FORM FROM BEING PROCESSED AND COULD RESULT IN THE APPLICATION BEING DENIED. THIS FORM HAS BEEN APPROVED BY THE FORMS MANAGEMENT CENTER.

FOR APPLICANT'S USE

APPLICATION PAGE

Printed on Resycled Paper 260-CAAPP

11) LIST ALL EMISSION UNITS AND OTHER CONTROL EQU	MENT BOOTING EMICOIONO TO THIS CONTINGE
EQUIPMENT: NAME	DESIGNATION OR CODE NUMBER
Bakery Line #1 (with Oven)	01
Bakery Line #2 (with Oven)	02
12) DOES THE CONTROL EQUIPMENT HAVE MORE THAN C	NE MODE OF OPERATION? YES NO
IF YES, EXPLAIN AND IDENTIFY WHICH MODE IS COVE A SEPARATE AIR POLLUTION CONTROL EQUIPMENT F COMPLETED FOR EACH MODE):	RED BY THIS FORM (NOTE: ORM 260-CAAPP MUST BE
13) IDENTIFY ALL ATTACHMENTS TO THIS FORM RELATED	TO THIS AIR POLLUTION CONTROL EQUIPMENT(E.G.,
TECHNICAL DRAWINGS): Application Text	
220-CAAPP form	•
260b-CAAPP form	
<u></u>	
	SCHEDULE
14) IDENTIFY ANY PERIOD WHEN THE CONTROL EQUIPME MAINTENANCE AND/OR REPAIRS WHEN THE FEEDING	
14) IDENTIFY ANY PERIOD WHEN THE CONTROL EQUIPME MAINTENANCE AND/OR REPAIRS WHEN THE FEEDING IN OPERATION: The Oxidizer will be shutdown for Monthly Maintenance every 640	NT WILL NOT BE OPERATING DUE TO SCHEDULED
14) IDENTIFY ANY PERIOD WHEN THE CONTROL EQUIPME MAINTENANCE AND/OR REPAIRS WHEN THE FEEDING IN OPERATION: The Oxidizer will be shutdown for Monthly Maintenance every 640 saftey tags, and clean all sensing lines and ports.	NT WILL NOT BE OPERATING DUE TO SCHEDULED EMISSION UNIT(S) TO THIS CONTROL EQUIPMENT IS/ARE hrs to lubricate all fan and damper bearings, inspect equipment and
14) IDENTIFY ANY PERIOD WHEN THE CONTROL EQUIPME MAINTENANCE AND/OR REPAIRS WHEN THE FEEDING IN OPERATION: The Oxidizer will be shutdown for Monthly Maintenance every 640 saftey tags, and clean all sensing lines and ports. The Oxidizer will be shutdown for Semi-Annual maintenance every spark ignitor for cracks, clean burner spark ignitor, check burner according to the control of the control o	INT WILL NOT BE OPERATING DUE TO SCHEDULED EMISSION UNIT(S) TO THIS CONTROL EQUIPMENT IS/ARE has to lubricate all fan and damper bearings, inspect equipment and 3800 hrs to check all transmitters and thermocouples, check burner truator operation, and leak test natural gas piping connections.
14) IDENTIFY ANY PERIOD WHEN THE CONTROL EQUIPME MAINTENANCE AND/OR REPAIRS WHEN THE FEEDING IN OPERATION: The Oxidizer will be shutdown for Monthly Maintenance every 640 saftey tags, and clean all sensing lines and ports. The Oxidizer will be shutdown for Semi-Annual maintenance every	NT WILL NOT BE OPERATING DUE TO SCHEDULED EMISSION UNIT(S) TO THIS CONTROL EQUIPMENT IS/ARE has to lubricate all fan and damper bearings, inspect equipment and 3800 hrs to check all transmitters and thermocouples, check burner truator operation, and leak test natural gas piping connections. hrs to internally inspect the unit, check pressure guages, replace
14) IDENTIFY ANY PERIOD WHEN THE CONTROL EQUIPME MAINTENANCE AND/OR REPAIRS WHEN THE FEEDING IN OPERATION: The Oxidizer will be shutdown for Monthly Maintenance every 640 saftey tags, and clean all sensing lines and ports. The Oxidizer will be shutdown for Semi-Annual maintenance every spark ignitor for cracks, clean burner spark ignitor, check burner act The Oxidizer will be shutdown for Annual Maintenance every 7600 thermocouples and UV sensor, clean/replace site glass, check bolt actuators' strokes, sample catalyst for activity, and check fan vibratenance.	NT WILL NOT BE OPERATING DUE TO SCHEDULED EMISSION UNIT(S) TO THIS CONTROL EQUIPMENT IS/ARE has to lubricate all fan and damper bearings, inspect equipment and 3800 hrs to check all transmitters and thermocouples, check burner truator operation, and leak test natural gas piping connections. hrs to internally inspect the unit, check pressure guages, replace tightness on access doors, test fail safes, cycle all valves, check ion levels.
14) IDENTIFY ANY PERIOD WHEN THE CONTROL EQUIPME MAINTENANCE AND/OR REPAIRS WHEN THE FEEDING IN OPERATION: The Oxidizer will be shutdown for Monthly Maintenance every 640 saffey tags, and clean all sensing lines and ports. The Oxidizer will be shutdown for Semi-Annual maintenance every spark ignitor for cracks, clean burner spark ignitor, check burner act The Oxidizer will be shutdown for Annual Maintenance every 7600 thermocouples and UV sensor, clean/replace site glass, check bott	NT WILL NOT BE OPERATING DUE TO SCHEDULED EMISSION UNIT(S) TO THIS CONTROL EQUIPMENT IS/ARE has to lubricate all fan and damper bearings, inspect equipment and 3800 hrs to check all transmitters and thermocouples, check burner truator operation, and leak test natural gas piping connections. hrs to internally inspect the unit, check pressure guages, replace tightness on access doors, test fail safes, cycle all valves, check ion levels.
14) IDENTIFY ANY PERIOD WHEN THE CONTROL EQUIPME MAINTENANCE AND/OR REPAIRS WHEN THE FEEDING IN OPERATION: The Oxidizer will be shutdown for Monthly Maintenance every 640 saftey tags, and clean all sensing lines and ports. The Oxidizer will be shutdown for Semi-Annual maintenance every spark ignitor for cracks, clean burner spark ignitor, check burner at the Oxidizer will be shutdown for Annual Maintenance every 7600 thermocouples and UV sensor, clean/replace site glass, check bolt actuators' strokes, sample catalyst for activity, and check fan vibrated 15a) IDENTIFY ANY PERIODS DURING OPERATION OF THE	NT WILL NOT BE OPERATING DUE TO SCHEDULED EMISSION UNIT(S) TO THIS CONTROL EQUIPMENT IS/ARE has to lubricate all fan and damper bearings, inspect equipment and 3800 hrs to check all transmitters and thermocouples, check burner truator operation, and leak test natural gas piping connections. hrs to internally inspect the unit, check pressure guages, replace tightness on access doors, test fail safes, cycle all valves, check ion levels.
14) IDENTIFY ANY PERIOD WHEN THE CONTROL EQUIPME MAINTENANCE AND/OR REPAIRS WHEN THE FEEDING IN OPERATION: The Oxidizer will be shutdown for Monthly Maintenance every 640 saftey tags, and clean all sensing lines and ports. The Oxidizer will be shutdown for Semi-Annual maintenance every spark ignitor for cracks, clean burner spark ignitor, check burner at the Oxidizer will be shutdown for Annual Maintenance every 7600 thermocouples and UV sensor, clean/replace site glass, check bolt actuators' strokes, sample catalyst for activity, and check fan vibrat 15a) IDENTIFY ANY PERIODS DURING OPERATION OF THE EQUIPMENT IS/ARE NOT USED:	NT WILL NOT BE OPERATING DUE TO SCHEDULED EMISSION UNIT(S) TO THIS CONTROL EQUIPMENT IS/ARE has to lubricate all fan and damper bearings, inspect equipment and 3800 hrs to check all transmitters and thermocouples, check burner truator operation, and leak test natural gas piping connections. hrs to internally inspect the unit, check pressure guages, replace tightness on access doors, test fail safes, cycle all valves, check ion levels.
14) IDENTIFY ANY PERIOD WHEN THE CONTROL EQUIPME MAINTENANCE AND/OR REPAIRS WHEN THE FEEDING IN OPERATION: The Oxidizer will be shutdown for Monthly Maintenance every 640 saftey tags, and clean all sensing lines and ports. The Oxidizer will be shutdown for Semi-Annual maintenance every spark ignitor for cracks, clean burner spark ignitor, check burner at the Oxidizer will be shutdown for Annual Maintenance every 7600 thermocouples and UV sensor, clean/replace site glass, check bolt actuators' strokes, sample catalyst for activity, and check fan vibrat 15a) IDENTIFY ANY PERIODS DURING OPERATION OF THE EQUIPMENT IS/ARE NOT USED:	NT WILL NOT BE OPERATING DUE TO SCHEDULED EMISSION UNIT(S) TO THIS CONTROL EQUIPMENT IS/ARE has to lubricate all fan and damper bearings, inspect equipment and 3800 hrs to check all transmitters and thermocouples, check burner truator operation, and leak test natural gas piping connections. hrs to internally inspect the unit, check pressure guages, replace tightness on access doors, test fail safes, cycle all valves, check ion levels.
14) IDENTIFY ANY PERIOD WHEN THE CONTROL EQUIPME MAINTENANCE AND/OR REPAIRS WHEN THE FEEDING IN OPERATION: The Oxidizer will be shutdown for Monthly Maintenance every 640 saftey tags, and clean all sensing lines and ports. The Oxidizer will be shutdown for Semi-Annual maintenance every spark ignitor for cracks, clean burner spark ignitor, check burner at the Oxidizer will be shutdown for Annual Maintenance every 7600 thermocouples and UV sensor, clean/replace site glass, check bolt actuators' strokes, sample catalyst for activity, and check fan vibrat 15a) IDENTIFY ANY PERIODS DURING OPERATION OF THE EQUIPMENT IS/ARE NOT USED:	NT WILL NOT BE OPERATING DUE TO SCHEDULED EMISSION UNIT(S) TO THIS CONTROL EQUIPMENT IS/ARE has to lubricate all fan and damper bearings, inspect equipment and 3800 hrs to check all transmitters and thermocouples, check burner truator operation, and leak test natural gas piping connections. hrs to internally inspect the unit, check pressure guages, replace tightness on access doors, test fail safes, cycle all valves, check ion levels.
14) IDENTIFY ANY PERIOD WHEN THE CONTROL EQUIPME MAINTENANCE AND/OR REPAIRS WHEN THE FEEDING IN OPERATION: The Oxidizer will be shutdown for Monthly Maintenance every 640 saftey tags, and clean all sensing lines and ports. The Oxidizer will be shutdown for Semi-Annual maintenance every spark ignitor for cracks, clean burner spark ignitor, check burner act The Oxidizer will be shutdown for Annual Maintenance every 7600 thermocouples and UV sensor, clean/replace site glass, check bolt actuators' strokes, sample catalyst for activity, and check fan vibrated 15a) IDENTIFY ANY PERIODS DURING OPERATION OF THE EQUIPMENT IS/ARE NOT USED:	NT WILL NOT BE OPERATING DUE TO SCHEDULED EMISSION UNIT(S) TO THIS CONTROL EQUIPMENT IS/ARE has to lubricate all fan and damper bearings, inspect equipment and 3800 hrs to check all transmitters and thermocouples, check burner tuator operation, and leak test natural gas piping connections. hrs to internally inspect the unit, check pressure guages, replace tightness on access doors, test fail safes, cycle all valves, check ion levels. FEEDING EMISSION UNIT(S) WHEN THE CONTROL
14) IDENTIFY ANY PERIOD WHEN THE CONTROL EQUIPME MAINTENANCE AND/OR REPAIRS WHEN THE FEEDING IN OPERATION: The Oxidizer will be shutdown for Monthly Maintenance every 640 saftey tags, and clean all sensing lines and ports. The Oxidizer will be shutdown for Semi-Annual maintenance every spark ignitor for cracks, clean burner spark ignitor, check burner act The Oxidizer will be shutdown for Annual Maintenance every 7600 thermocouples and UV sensor, clean/replace site glass, check bolt actuators' strokes, sample catalyst for activity, and check fan vibrat 15a) IDENTIFY ANY PERIODS DURING OPERATION OF THE EQUIPMENT IS/ARE NOT USED: N/A b) IS THIS CONTROL EQUIPMENT IN OPERATION AT ALL	EMISSION UNIT(S) TO THIS CONTROL EQUIPMENT IS/ARE but to lubricate all fan and damper bearings, inspect equipment and 3800 hrs to check all transmitters and thermocouples, check burner functor operation, and leak test natural gas piping connections. This to internally inspect the unit, check pressure guages, replace tightness on access doors, test fail safes, cycle all valves, check ion levels. FEEDING EMISSION UNIT(S) WHEN THE CONTROL OTHER TIMES THAT THE
14) IDENTIFY ANY PERIOD WHEN THE CONTROL EQUIPME MAINTENANCE AND/OR REPAIRS WHEN THE FEEDING IN OPERATION: The Oxidizer will be shutdown for Monthly Maintenance every 640 saftey tags, and clean all sensing lines and ports. The Oxidizer will be shutdown for Semi-Annual maintenance every spark ignitor for cracks, clean burner spark ignitor, check burner active The Oxidizer will be shutdown for Annual Maintenance every 7600 thermocouples and UV sensor, clean/replace site glass, check bolt actuators' strokes, sample catalyst for activity, and check fan vibrational IDENTIFY ANY PERIODS DURING OPERATION OF THE EQUIPMENT IS/ARE NOT USED: N/A b) IS THIS CONTROL EQUIPMENT IN OPERATION AT ALL FEEDING EMISSION UNIT(S) IS/ARE IN OPERATION? IF NO, EXPLAIN AND PROVIDE THE DURATION OF THE	EMISSION UNIT(S) TO THIS CONTROL EQUIPMENT IS/ARE but to lubricate all fan and damper bearings, inspect equipment and 3800 hrs to check all transmitters and thermocouples, check burner functor operation, and leak test natural gas piping connections. This to internally inspect the unit, check pressure guages, replace tightness on access doors, test fail safes, cycle all valves, check ion levels. FEEDING EMISSION UNIT(S) WHEN THE CONTROL OTHER TIMES THAT THE
14) IDENTIFY ANY PERIOD WHEN THE CONTROL EQUIPME MAINTENANCE AND/OR REPAIRS WHEN THE FEEDING IN OPERATION: The Oxidizer will be shutdown for Monthly Maintenance every 640 saftey tags, and clean all sensing lines and ports. The Oxidizer will be shutdown for Semi-Annual maintenance every spark ignitor for cracks, clean burner spark ignitor, check burner active The Oxidizer will be shutdown for Annual Maintenance every 7600 thermocouples and UV sensor, clean/replace site glass, check bolt actuators' strokes, sample catalyst for activity, and check fan vibrational IDENTIFY ANY PERIODS DURING OPERATION OF THE EQUIPMENT IS/ARE NOT USED: N/A b) IS THIS CONTROL EQUIPMENT IN OPERATION AT ALL FEEDING EMISSION UNIT(S) IS/ARE IN OPERATION? IF NO, EXPLAIN AND PROVIDE THE DURATION OF THE	EMISSION UNIT(S) TO THIS CONTROL EQUIPMENT IS/ARE but to lubricate all fan and damper bearings, inspect equipment and 3800 hrs to check all transmitters and thermocouples, check burner functor operation, and leak test natural gas piping connections. This to internally inspect the unit, check pressure guages, replace tightness on access doors, test fail safes, cycle all valves, check ion levels. FEEDING EMISSION UNIT(S) WHEN THE CONTROL OTHER TIMES THAT THE
14) IDENTIFY ANY PERIOD WHEN THE CONTROL EQUIPME MAINTENANCE AND/OR REPAIRS WHEN THE FEEDING IN OPERATION: The Oxidizer will be shutdown for Monthly Maintenance every 640 saftey tags, and clean all sensing lines and ports. The Oxidizer will be shutdown for Semi-Annual maintenance every spark ignitor for cracks, clean burner spark ignitor, check burner active the Oxidizer will be shutdown for Annual Maintenance every 7600 thermocouples and UV sensor, clean/replace site glass, check bolt actuators' strokes, sample catalyst for activity, and check fan vibrational IDENTIFY ANY PERIODS DURING OPERATION OF THE EQUIPMENT IS/ARE NOT USED: N/A b) IS THIS CONTROL EQUIPMENT IN OPERATION AT ALL FEEDING EMISSION UNIT(S) IS/ARE IN OPERATION? IF NO, EXPLAIN AND PROVIDE THE DURATION OF THE	EMISSION UNIT(S) TO THIS CONTROL EQUIPMENT IS/ARE but to lubricate all fan and damper bearings, inspect equipment and 3800 hrs to check all transmitters and thermocouples, check burner functor operation, and leak test natural gas piping connections. This to internally inspect the unit, check pressure guages, replace tightness on access doors, test fail safes, cycle all valves, check ion levels. FEEDING EMISSION UNIT(S) WHEN THE CONTROL OTHER TIMES THAT THE

	TION(S) SET BY RULE(S) WHICH ARE APPLICABLE TO THIS EMISSION UNIT (E.G., VOM, IAC 218.207(b)(1), 81% EMISSION STANDARD(S)	REQUIREMENT(S)	REQUIREMENT(S)	REQUIREMENT(S)	: REQUIREMENT(S)
APPLICABLE RULES	S) AND LIMITATION(S) SET BY RULE(S) WHICH ARE APPLICABLE TO EMISSION STANDARD(S)	17) PROVIDE ANY SPECIFIC RECORDKEEPING RULE(S) WHICH ARE APPLICABLE TO THIS EMISSION UNIT: REGULATED AIR POLLUTANT(S) RECORDKEEPING RULE(S)	NHICH ARE APPLICABLE TO THIS EMISSION UNIT: REPORTING RULE(S) Refer to Application Text	19) PROVIDE ANY SPECIFIC MONITORING RULE(S) REGULATED AIR POLLUTANT(S) MONITORING RULE(S)	OR PROCEDURES WHICH ARE APPLICABLE TO THIS EMISSION UNIT TESTING RULE(S)
	16) PROVIDE ANY SPECIFIC EMISSION STANDARD(S) AND LIMITA OVERALL & 90% CONTROL DEVICE EFF.): REGULATED AIR POLLUTANT(S)	17) PROVIDE ANY SPECIFIC RECORDKEEPING RUI REGULATED AIR POLLUTANT(S)	18) PROVIDE ANY SPECIFIC REPORTING RULE(S) WHICH ARE APPLICABLE TO THIS EMISSION UNIT: REGULATED AIR POLLUTANT(S) REGULATED AIR POLLUTANT(S) REGULATED AIR POLLUTANT(S) REGULATED AIR POLLUTANT(S) REGULATED AIR POLLUTANT(S)	19) PROVIDE ANY SPECIFIC MONITORING RULE(S) REGULATED AIR POLLUTANT(S)	20) PROVIDE ANY SPECIFIC TESTING RULES AND/OR PROCEDUR REGULATED AIR POLLUTANT(S)

APPLICATION PAGE
Printed on Recycled Paper
260-CAAPP

		INFORMATION						
21) IS THE CONTROL SYST REQUIREMENTS?	EM IN COMPLIANCE WITH ALL	APPLICABLE	⊗ YES Ω NO					
IF NO, THEN FORM 294 COMPLYING EMISSION	-CAAPP "COMPLIANCE PLAN/S UNITS" MUST BE COMPLETED	CHEDULE OF COMPLIANCE — A AND SUBMITTED WITH THIS A	ADDENDUM FOR NON APPLICATION.					
22) EXPLANATION OF HOW	INITIAL COMPLIANCE IS TO B	E, OR WAS PREVIOUSLY, DEM	ONSTRATED:					
Initial compliance was	determined based on the v	ender guaranteed VOM de	struction efficiency will					
be used to demonstrat								
			•					
			•					
•								
22) EVELANATION OF HOM	V ONGOING COMPLIANCE WILL	BE DEMONSTRATED:						
23) EXPLANATION OF HOW ONGOING COMPLIANCE WILL BE DEMONSTRATED: Catalyst Activity will be used to demonstrate compliance.								
Catalyst Activity will be	s asca to demonstrate com	pharios.						
		•						
		•	,					
		ADDIVERDITO AND DED	ODTINO					
24a) LIST THE PARAMETE	TING, MONITORING, REC RS THAT RELATE TO AIR EMISS	SIONS FOR WHICH RECORDS	ARE BEING MAINTAINED TO					
DETERMINE FEES, RU	JIE APPLICABILITY OR COMPL REMENT, AND THE FREQUENCY	IANCE. INCLUDE THE UNIT OF	MEASUREMENT, THE					
PARAMETER	UNIT OF MEASUREMENT	METHOD OF MEASUREMENT	FREQUENCY					
Combustion Chamber Temperature	degrees F	Continuous Monitor	Continuous					
Catalyst Injet Temperature	degrees F	Continuous Monitor	Continuous					
Catalyst Activity	Destruction Rate Efficiency (DRE)	Catalyst Activity Test	Annual					

	ND TITLE OF PERSON TO COM	TITLE OF	TITLE OF
PARAMETER Combustion Chamber	RECORDKEEPING Electronic Data Historian	PERSON RESPONSIBLE	CONTACT PERSON Plant Manager
Temperature		Plant Manager	
Catalyst Inlet Temperature	Electronic Data Historian	Plant Manager	Plant Manager
Catalyst Activity	Testing Records	Plant Manager	Plant Manager
em ilman			
. **	ALOCALISM A Toka		
	E CONTROL EQUIPMENT REA	ADILY DEMONSTRATED BY	
REVIEW OF THE RECC	IRUS?		
IF NO, EXPLAIN:			
# 0			
d) ARE ALL RECORDS RE	EADILY AVAILABLE FOR INSPE SENCY UPON REQUEST?	ECTION, COPYING AND/OR	YES UNO
e v jefe b	SENOT OF CHARLEGEOT.		
IF NO, EXPLAIN:			
IF NO, EXPLAIN:			i fac.
IF NO, EXPLAIN:			Far. p.
IF NO, EXPLAIN:			F. T.
IF NO, EXPLAIN:			FAR. BY
5a) DESCRIBE ANY MON	ITORS OR MONITORING ACTI	VITIES USED TO DETERMINE FE	EES, RULE APPLICABILITY OR
5a) DESCRIBE ANY MON COMPLIANCE:			
5a) DESCRIBE ANY MON COMPLIANCE: Combustion Chamber		VITIES USED TO DETERMINE FE let Temperature, and Cataly	
5a) DESCRIBE ANY MON COMPLIANCE:			
5a) DESCRIBE ANY MON COMPLIANCE: Combustion Chamber			
5a) DESCRIBE ANY MON COMPLIANCE: Combustion Chamber			
5a) DESCRIBE ANY MON COMPLIANCE: Combustion Chamber monitored.	Temperature, Catalyst In	let Temperature, and Cataly	rst Actiivity will be
5a) DESCRIBE ANY MON COMPLIANCE: Combustion Chamber monitored. b) WHAT OPERATING PA	Temperature, Catalyst In	let Temperature, and Cataly	rst Actiivity will be
5a) DESCRIBE ANY MON COMPLIANCE: Combustion Chamber monitored. b) WHAT OPERATING PA Combustion Chambe	Temperature, Catalyst In	let Temperature, and Cataly	rst Actiivity will be
5a) DESCRIBE ANY MON COMPLIANCE: Combustion Chamber monitored. b) WHAT OPERATING PA Combustion Chambe	Temperature, Catalyst In	let Temperature, and Cataly	rst Actiivity will be
5a) DESCRIBE ANY MON COMPLIANCE: Combustion Chamber monitored. b) WHAT OPERATING PA	Temperature, Catalyst In	let Temperature, and Cataly	rst Actiivity will be
5a) DESCRIBE ANY MON COMPLIANCE: Combustion Chamber monitored. b) WHAT OPERATING PA Combustion Chambe	Temperature, Catalyst In	let Temperature, and Cataly	rst Actiivity will be
5a) DESCRIBE ANY MON COMPLIANCE: Combustion Chamber monitored. b) WHAT OPERATING PA Combustion Chambe	Temperature, Catalyst In	let Temperature, and Cataly	rst Actiivity will be
5a) DESCRIBE ANY MON COMPLIANCE: Combustion Chamber monitored. b) WHAT OPERATING PA Combustion Chambe monitored.	Temperature, Catalyst In	let Temperature, and Cataly	rst Actiivity will be N CHAMBER TEMPERATURE)? yst Actiivity will be
5a) DESCRIBE ANY MON COMPLIANCE: Combustion Chamber monitored. b) WHAT OPERATING PACombustion Chambe monitored.	Temperature, Catalyst In	let Temperature, and Cataly MONITORED (E.G., COMBUSTION LIET Temperature, and Cataly G., EXIT OF COMBUSTION CHAM	rst Actiivity will be N CHAMBER TEMPERATURE)? yst Actiivity will be
5a) DESCRIBE ANY MON COMPLIANCE: Combustion Chamber monitored. b) WHAT OPERATING PACombustion Chambe monitored. c) DESCRIBE THE LOCA Combustion Chambe	Temperature, Catalyst In	net Temperature, and Cataly MONITORED (E.G., COMBUSTION LIET Temperature, and Cataly S., EXIT OF COMBUSTION CHAM Initored at the exit of the com	rst Actiivity will be N CHAMBER TEMPERATURE) yst Actiivity will be
5a) DESCRIBE ANY MON COMPLIANCE: Combustion Chamber monitored. b) WHAT OPERATING PA Combustion Chambe monitored. c) DESCRIBE THE LOCA Combustion Chambe Catalyst Inlet Tempel	Temperature, Catalyst In RAMETER(S) IS(ARE) BEING I Temperature, Catalyst In ATION OF EACH MONITOR (E.C.	MONITORED (E.G., COMBUSTION CHAIN) The state of the complete of the complete the catalyst tray.	rst Actiivity will be N CHAMBER TEMPERATURE) yst Actiivity will be
c) DESCRIBE ANY MON COMPLIANCE: Combustion Chamber monitored. b) WHAT OPERATING PACOmbustion Chamber monitored. c) DESCRIBE THE LOCA Combustion Chamber Catalyst Inlet Temper	Temperature, Catalyst In RAMETER(S) IS(ARE) BEING In Temperature, Catalyst In ATION OF EACH MONITOR (E.C. or Temperature will be more rature will be monitored af	MONITORED (E.G., COMBUSTION CHAIN) The state of the complete of the complete the catalyst tray.	rst Actiivity will be N CHAMBER TEMPERATURE) yst Actiivity will be

25d) IS EACH MONITOR EQUIPPED WITH	A RECORDING DEVICE?	O YES NO					
IF NO, LIST ALL MONITORS WITHOU	UT A RECORDING DEVICE:						
Combustion Chamber Temperature Catalyst Inlet Temperature monitor Catalyst Activity is not determined	will be equipped with a recording						
e) IS EACH MONITOR REVIEWED FOR A BASIS?	ACCURACY ON AT LEAST A QUARTERL	Y O YES NO					
IF NO, EXPLAIN: Combustion Chamber Temperature Catalyst Inlet Temperature monitor Catalyst Activity is not determined	will be reviewed for accuracy on a using a monitor.	t least a quarterly basis.					
f) IS EACH MONITOR OPERATED AT A OPERATION?	LL TIMES THE CONTROL EQUIPMENT IS	SIN YES NO					
IF NO, EXPLAIN:	- -						
Combustion Chamber Temperature monitor will operate at all times the Oxidizer is operating. Catalyst Inlet Temperature monitor will operate at all times the Oxidizer is operating. Catalyst Activity is not determined using a monitor.							
26) PROVIDE INFORMATION ON THE MOST RECENT TESTS, IF ANY, IN WHICH THE RESULTS ARE USED FOR PURPOSES OF THE DETERMINATION OF FEES, RULE APPLICABILITY OR COMPLIANCE. INCLUDE THE TEST DATE, TEST METHOD USED, TESTING COMPANY, OPERATING CONDITIONS EXISTING DURING THE TEST AND A SUMMARY OF RESULTS. IF ADDITIONAL SPACE IS NEEDED, ATTACH AND LABEL AS EXHIBIT 260-1:							
TEST DATE TEST METHOD	OPERA TESTING COMPANY CONDIT						
TEST DATE TEST METHOD	125TING COMPART	JOHN SOMMING THE SECTION					
		<u> </u>					
27) DESCRIBE ALL REPORTING REQUIR SUBMITTALS TO THE AGENCY:	REMENTS AND PROVIDE THE TITLE AND	FREQUENCY OF REPORT					
. REPORTING REQUIREMENTS	TITLE OF REPORT	FREQUENCY					
All regulated pollutants	Annual Emissions Report	Annual					
Compliance Status							
	CAPTURE AND CONTROL						
28) DESCRIBE THE CAPTURE SYSTEM CONTROL EQUIPMENT. INCLUDE A USED AT EACH EMISSION POINT. (USED TO CONTAIN, COLLECT AND TRA LLL HOODS, DUCTS, FANS, ETC. ALSO I IF ADDITIONAL SPACE IS NEEDED, ATT	NCLUDE THE METHOD OF CAPTURE					
Oven vent exhaust will be piped to	catalytic oxidizer.						
		·					
	•	,					

	ARE FEATURES OF THE C DIAGRAM CONTAINED IN			ED IN THE FLOW	X YES	U NO
	IF NO, A SKETCH SHOWIN ATTACHED AND LABELED		OF THE CAPTURE SY	STEM SHOULD BE		
	PROVIDE THE ACTUAL (MI DESTRUCTION/REMOVAL COMBINATION OF THE CA TO BE CONTROLLED. ATT WHICH THESE EFFICIENC	EFFICIENCY, AND T APTURE SYSTEM AN TACH THE CALCULA	THE OVERALL REDU ID CONTROL EQUIP ATIONS, TO THE EXT	CTION EFFICIENCY MENT FOR EACH RE ENT THEY ARE AIR	PROVIDED BY T GULATED AIR P	HE OLLUTANT
a)	CONTROL PERFORMANC	<u>E:</u>				
	REGULATED AIR	CAPTURE S EFFICIEN		TROL EQUIPMENT (%)	OVERALL RE EFFICIEN	
	POLLUTANT	(MIN)	(TYP) (M	IN) (TYP)	(MIN)	(TYP)
i	VOM	75	95		71.25	
ii	- W		а д		1	
iii	7				3	2
iv.	EXPLAIN ANY OTHER RECOOLANT TEMPERATURE		NTROL EQUIPMENT PE	RFORMANCE SUCH AS	OUTLET CONCEN	TRATION,
		*				18 ° - 1
h) METHOD USED TO DETE	PMINE FACH OF TH	F AROVE FEEICIEN	CIES (E.G., STACK T	EST. MATERIAL	BALANCE,
	MANUFACTURER'S GUA	RANTEE, ETC.) AND	THE DATE LAST TE	STED, IF APPLICAB	LE:	ATT TO CONTROL OF THE PARTY OF
		FFFICIENCY DETERM	INATION METHOD			E LAST STED
Ī	CAPTURE: Conservative	engineering estin				
	Conservative	engineering estir				
	Conservative CONTROL: Manufacturer	engineering estir				
	Conservative	engineering estir				
	Conservative CONTROL: Manufacturer OVERALL: Engineering of	engineering estir guarantee calculations				
6	Conservative CONTROL: Manufacturer	engineering esting guarantee calculations	mate	OVERALL		
c	Conservative CONTROL: Manufacturer OVERALL: Engineering of	engineering estir guarantee calculations		OVERALL REDUCTION EFFICIENCY (%)		STED
c	Conservative CONTROL: Manufacturer OVERALL: Engineering (O) REQUIRED PERFORMAN REGULATED AIR	engineering estirence calculations CE: CAPTURE SYSTEM	CONTROL EQUIPMENT EFFICIENCY (%)	REDUCTION EFFICIENCY	APPLICABL	STED
	Conservative CONTROL: Manufacturer OVERALL: Engineering () REQUIRED PERFORMAN REGULATED AIR POLLUTANT	engineering estirence calculations CE: CAPTURE SYSTEM	control EQUIPMENT	REDUCTION EFFICIENCY	TES	STED
ī	Conservative CONTROL: Manufacturer OVERALL: Engineering () REQUIRED PERFORMAN REGULATED AIR POLLUTANT	engineering estirence calculations CE: CAPTURE SYSTEM	CONTROL EQUIPMENT EFFICIENCY (%)	REDUCTION EFFICIENCY	APPLICABL	STED
l II	Conservative CONTROL: Manufacturer OVERALL: Engineering () REQUIRED PERFORMAN REGULATED AIR POLLUTANT	engineering estirence calculations CE: CAPTURE SYSTEM	CONTROL EQUIPMENT EFFICIENCY (%)	REDUCTION EFFICIENCY	APPLICABL	STED
1	Conservative CONTROL: Manufacturer OVERALL: Engineering () REQUIRED PERFORMAN REGULATED AIR POLLUTANT VOM EXPLAIN ANY OTHER RE	calculations CE: CAPTURE SYSTEM EFFICIENCY (%)	CONTROL EQUIPMENT EFFICIENCY (%) 95% by weight	REDUCTION EFFICIENCY (%)	APPLICABL	E RULE
I III	Conservative CONTROL: Manufacturer OVERALL: Engineering () REQUIRED PERFORMAN REGULATED AIR POLLUTANT VOM	e engineering estir r guarantee calculations CE: CAPTURE SYSTEM EFFICIENCY (%)	CONTROL EQUIPMENT EFFICIENCY (%) 95% by weight	REDUCTION EFFICIENCY (%)	APPLICABL	E RULE
I III	Conservative CONTROL: Manufacturer OVERALL: Engineering () REQUIRED PERFORMAN REGULATED AIR POLLUTANT VOM EXPLAIN ANY OTHER RE	e engineering estir r guarantee calculations CE: CAPTURE SYSTEM EFFICIENCY (%)	CONTROL EQUIPMENT EFFICIENCY (%) 95% by weight	REDUCTION EFFICIENCY (%)	APPLICABL	E RULE
i II	Conservative CONTROL: Manufacturer OVERALL: Engineering () REQUIRED PERFORMAN REGULATED AIR POLLUTANT VOM EXPLAIN ANY OTHER RE	e engineering estir r guarantee calculations CE: CAPTURE SYSTEM EFFICIENCY (%)	CONTROL EQUIPMENT EFFICIENCY (%) 95% by weight	REDUCTION EFFICIENCY (%)	APPLICABL	E RULE

					(31)E	NOISSIM	(31)EMISSION INFORMATION	TION				
The second secon			1ACTUAL	¹ ACTUAL EMISSION	RATE		ALLO	WABLE BY	ALLOWABLE BY RULE EMISSION RATE	ON RATE	² PERMITTED EMISSION RATE	SION RATE
REGULATED AIR POLLUTANT		LBS PER HOUR (LBS/HR)	TONS PER YEAR (TONS/YR)	³ OTHER TERMS	³ OTHER TERMS	4 _{DM}	5RATE	(UNITS)	APPLICABLE RULES	TONS PER YEAR (TONS/YR)	RATE (UNITS)	TONS PER YEAR (TONS/YR)
CARBON	MAXIMUM:							()				
MONOXIDE (CO)	TYPICAL:							()			() () () () () () () () () () () () () (
LEAD	MAXIMUM:											
	TYPICAL:											
NITROGEN	MAXIMUM:							^				
OXIDES (NOx)	TYPICAL:							^				
PARTICULATE	MAXIMUM:							(
MATTER (PART)	TYPICAL:							^ · · · · · · · ·				
PARTICULATE MATTER <= 10	MAXIMUM:							()				A COLUMN TO THE PARTY OF THE PA
MICROMETERS (PM10)	TYPICAL:							^ _				
SULFUR	MAXIMUM:					,						
DIOXIDE (SOZ)	TYPICAL:							^				
VOLATILE ORGANIC	MAXIMUM:	Ref	er to A	Refer to Attachm	nent A			()				
MATERIAL (VOM)	TYPICAL:	.						^)				
OTHER, SPECIFY:	MAXIMUM:				,			^			·	
_	TYPICAL;											
EXAMPLE: PARTICH ATE	MAXIMUM:	5.00	21.9	0.3 GR/DSCF		1	6.0 (1.	6.0 (LBS/HR)	212.321	26.28	5.5 LBS/HR	22
MATTER	TYPICAL:	4.00	14.4	0.24 GR/DSCF		4	5.5 (L	5.5 (LBS/HR)	212.321	19.80		
									1 m 4 m 1 m 1 m 1 m 1 m 1 m 1 m 1 m 1 m			

IMPORTANT: ATTACH CALCULATIONS, TO THE EXTENT THEY ARE AIR EMISSIONS RELATED, ON WHICH EMISSIONS WERE DETERMINED AND LABEL AS EXHIBIT 260-5.

¹PROVIDE CONTROLLED EMISSIONS (E.G., THE EMISSIONS THAT WOULD RESULT AFTER ALL CONTROL AND CAPTURE EFFICIENCIES ARE ACCOUNTED FOR).

²PROVIDE THE EMISSION RATE THAT WILL BE USED AS A PERMIT SPECIAL CONDITION. THIS LIMIT WILL BE USED TO DETERMINE THE PERMIT FEE.

³PLEASE PROVIDE ANY OTHER EMISSION RATE WHICH IS COMMONLY USED, REQUIRED BY A SPECIFIC LIMITATION OR THAT WAS MEASURED (E.G. PPM, GR/DSCF, ETC.)

⁴DM - DETERMINATION METHOD: 1) STACK TEST, 2) MATERIAL BALANCE, 3) STANDARD EMISSION FACTOR (AP-42 OR AIRS), 4) ENGINEERING ESTIMATE, 5) SPECIAL EMISSION FACTOR (NOT AP-42 OR AIRS)

⁵RATE - ALLOWABLE EMISSION RATE SPECIFIED BY MOST STRINGENT APPLICABLE RULE.

APPLICATION PAGE
Printed on Recycled Paper
260-CAAPP

	引	APPLICABLE RULE					æ											2	CFR 61	61.302(b),(d)
	ALLOWABLE BY RULE	⁵ RATE OR STANDARD											77						98% by wt control device	leak-tight trucks
ORIMATION	: :	4рм					1000												. 2	2
(32) HAZARDOUS AIR POLLUTANT EMISSION INFORMATION		³ OTHER TERMS	ment A		7					,	34		0				8			
IR POLLUTANT	1ACTUAL EMISSION RATE	TONS PER YEAR (TONS/YR)	Refer to Attachment A			aniens commonweal													1.2	0.8
HAZARDOUS A	1ACTUAL EM	POUNDS PER HOUR (LBS/HR)	Refer																10.0	8.0
(32)		4.1	MAXIMUM:	TYPICAL:	MAXIMUM:	TYPICAL:	MAXIMUM:	TYPICAL:	MAXIMUM:	TYPICAL:	MAXIMUM:	TYPICAL:	MAXIMUM:	TYPICAL:	MAXIMUM:	TYPICAL:	MAXIMUM:	TYPICAL:	MAXIMUM:	TYPICAL:
	TION	2CAS NUMBER												N N						71432
	HAP INFORMATION	NAME OF HAP		×					**************************************	70 70		E 43						0	EVANDIE	Benzene

IMPORTANT: ATTACH CALCULATIONS, TO THE EXTENT THEY ARE AIR EMISSIONS RELATED, ON WHICH EMISSIO

1 PROVIDE CONTROLLED EMISSIONS (E.G., THE EMI<mark>SS</mark>IONS THAT WOULD RESULT AFTER ALL CONTROL AND CAPTURE EFFICIENCIES ARE ACCOUNTED FOR).

2 CAS - CHEMICAL ABSTRACT SERVICE NUMBER.

3 PLEASE PROVIDE ANY OTHER EMISSION RATE WHICH IS COMMONLY USED, REQUIRED BY A SPECIFIC LIMITATION OR THAT WAS MEASURED (E.G., PPM, GRUDSCF, ETC.).

4 DM - DETERMINATION METHOD: 1) STACK TEST, 2) MATERIAL BALANCE, 3) STANDARD EMISSION FACTOR (AP-42 OR AIRS, 4) ENGINEERING ESTIMATE, 5) SPECIAL EMISSION FACTOR (NOT AP-42 OR AIRS).

5 RATE - ALLOWABLE EMISSION RATE OR STANDARD SPECIFIED BY MOST STRINGENT APPLICABLE RULE.

APPLICATION PAGE
Printed on Recycled Paper
260-CAAPP

EXHAUST POINT INFORMATION						
33) DESCRIPTION OF EXHAUST POINT (STACK, VENT, ROOF MONITOR, INDOORS, ETC.). IF THE EXHAUST POINT DISCHARGES INDOORS, DO NOT COMPLETE THE REMAINING ITEMS.						
Stack		•				
34) DISTANCE TO NEAREST PLANT BOU	JNDARY FROM EXH	AUST POINT DISCH	ARGE (FT):			
	TBD					
35) DISCHARGE HEIGHT ABOVE GRADE						
	38	10447573				
36) GOOD ENGINEERING PRACTICE (G						
37) DIAMETER OF EXHAUST POINT (FT) 1.128 TIMES THE SQUARE ROOT OF		N CIRCULAR EXHAU 1.83	JST POINT, THE DIAMETER IS			
38) EXIT GAS FLOW RATE	a) MAXIMUM (ACFI	M):	b) TYPICAL (ACFM):			
	81	13	6410			
39) EXIT GAS TEMPERATURE	a) MAXIMUM (°F): 4(00	b) TYPICAL (°F): 385			
40) DIRECTION OF EXHAUST (VERTICAL, LATERAL, DOWNWARD):						
Vertical						
41) LIST ALL EMISSION UNITS AND CONTROL DEVICES SERVED BY THIS EXHAUST POINT:						
NAME		FLO	W DIAGRAM DESIGNATION			
^{a)} Bakery Line #1 (with Oven)		01				
b) Bakery Line #2 (with Oven)		02				
c)						
d)			1			
e)						
n		*				
g)						
9/						
	·······					
42) WHAT PERCENTAGE OF THE CONT	ROL EQUIPMENT E	MISSIONS ARE BEIN	IG DUCTED TO THIS			
EXHAUST POINT (%)?	100)				
43) IF THE PERCENTAGE OF THE CONT			UCTED TO THE EXHAUST POINT IS			
NOT 100%, THEN EXPLAIN WHERE	THE REMAINING EN	IISSIONS ARE BEING	G EXHAUSTED TO:			
THE FOLLOWING INFORMATION NEED ONLY 44a) LATITUDE:	BE SUPPLIED IF READ	ILY AVAILABLE. b) LONGITUDE:				
, _, _, _						
45) UTM ZONE:	b) UTM VERTICAL	(KM):	c) UTM HORIZONTAL (KM):			

ILLINOIS ENVIRONMENTAL PROTECTION AGENCY DIVISION OF AIR POLLUTION CONTROL -- PERMIT SECTION P.O. BOX 19506 SPRINGFIELD, ILLINOIS 62794-9506

NATURAL GAS

Revision #:			
Date:	_ / _		1
Page		_ of	
Source Design	nat	ion:	

SUPPLEMENTAL FORM
AIR POLLUTION CONTROL
EQUIPMENT
AFTERBURNER (260B)

1) FLOW DIAGRAM DESIGNATION OF AFTERBURNER:

2) FUEL USED IN BURNERS:

	FOR AGENCY USE ONLY
RM ROL	ID NUMBER: CONTROL EQUIPMENT#:
TO E	
B)	DATE:
1.3	· ·
DATA AND IN	NFORMATION
RBURNER:	
Oxidize	er .
RAL GAS	FUEL OIL; NUMBER:
K, SFLOII 1.	
1.65	(MILLION BTU/HR, EACH)
PERATURE (DEC	GREES FAHRENHEIT):
	650

OTHER, SPECIFY:								
2) PUDVICES DED								
3) BURNERS PER AFTERBURNER:								
AFTERBURNER: 1 AT 1.65	(MILLION BTU/HR, EACH)							
4) MINIMUM COMBUSTION CHAMBER TEMPERATURE (DE								
4) WINNING COMBOSTION CHAMBER TEMPERATORE (DE								
	650							
C) IO A CATALVOT LICEDS:								
5) IS A CATALYST USED?: IF YES, CATALYST MATERIAL: Ceramic Monolith Bloc	Jk with Solf Clooping YES UNO							
	k with Self-Cleaning							
Ceramic Guard Bed								
6) EXPECTED FREQUENCY OF CATALYST	7) DATE CATALYST WAS LAST							
REPLACEMENT:	REPLACED (MONTH/YEAR):							
	1							
7 - 10 years								
8) EXPLAIN DEGRADATION OR PERFORMANCE INDICATOR CRITERIA DETERMINING CATALYST REPLACEMENT:								
Annual Catalyst Activity Tests will be conducted to determine the effectiveness of the catalyst at different								
temperatures as well as to determine whether or not the	ere are any contaminants present.							
9a) IS A HEAT EXCHANGER USED?:								
IF YES, DESCRIBE:								
The Oxidizer utilizes an all-welded plate-style primary heat exchanger fabricated of 304L stair	nless steel which prevents cross contamination of the clean oxidized gasses with the cool dirty inlet							
gasses. The counter flow of process exhaust gas with clean oxidized air allows relatively coo insulated. Additionally, there are side mounted stainless steel inlet connection with even flow	I operation. Further, since the exchanger is located within the oxidizer, the exchanger is fully							
insulated. Additionally, there are side mounted stainless steel inlet connection with even now	all distribution veins and wide 1/2-incr plate spacing for low pressure drop.							
b) HEAT EXCHANGER SURFACE AREA (FT ²):	c) AVERAGE THERMAL EFFICIENCY (%):							
2200	70							
2200	70							
10) DESCRIBE METHOD OF GAS MIXING USED:								
The Oxidizer utilizes a high velocity mixing chamber a	of the burner, which forces flame impingement and							
	at the burner, which forces harne impingement and							
turbulence to occur.								
11) RANGE OF RETENTION	12) COMBUSTION CHAMBER							
TIME:	LENGTH (FEET):							
	(SEC)							

THIS AGENCY IS AUTHORIZED TO REQUIRE THIS INFORMATION UNDER ILLINOIS REVISED STATUTES, 1991, AS AMENDED 1992, CHAPTER 111 1/2, PAR. 1039.5. DISCLOSURE OF THIS INFORMATION IS REQUIRED UNDER THAT SECTION. FAILURE TO DO SO MAY PREVENT THIS FORM FROM BEING PROCESSED AND COULD RESULT IN THE APPLICATION BEING DENIED. THIS FORM HAS BEEN APPROVED BY THE FORMS MANAGEMENT CENTER.

APPLICATION PAGE

FOR APPLICANT'S USE

13) COMBUSTION CHAMBER CROSS SECTIONAL AREA (SQUA		d Surface Area: 20 sq.ft
14) INLET EMISSION STREAM PARAMETERS:		
	MAX	TYPICAL
PRESSURE (mmHG):	3.74	
HEAT CONTENT (BTU/SCF):		
HEAT CONTENT (BIO/GOT).	0.922	
OXYGEN CONTENT (%):	17	
MOISTURE CONTENT (%):	20	
ARE HALOGENATED ORGANICS PRESENT?	YES NO	
ARE PARTICULATES PRESENT?	X YES NO	•
ARE METALS PRESENT?	YES NO	-
15) AFTERBURNER OPERATING PARAMETERS:		
15) AFTERBURNER OFERATING FARAMETERS.	DURING MAXIMUM OPERATION OF FEEDING UNIT(S)	DURING TYPICAL OPERATION OF FEEDING UNIT(S)
COMBUSTION CHAMBER TEMPERATURE (DEGREES FAHRENHEIT):	1250	
INLET GAS TEMPERATURE (DEGREES FAHRENHEIT):	210-250	
INLET FLOW RATE (SCFM):	4,960 [°]	
EFFICIENCY (VOM REDUCTION):	95	(%)
EFFICIENCY (OTHER; SPECIFY CONTAMINANT:):	(%)	(%)
40. COD THERMAL AFTERDURANDO IS THE COMPLICTION OF	HAMBED TEMPEDATURE	
16) FOR THERMAL AFTERBURNERS, IS THE COMBUSTION C CONTINUOUSLY MONITORED AND RECORDED?		O YES O NO
17) FOR CATALYTIC AFTERBURNERS, IS THE TEMPERATURI CATALYST BED CONTINUOUSLY MONITORED AND RECO	E RISE ACROSS THE DRDED?	X YES NO
18) IS THE VOM CONCENTRATION OF EXHAUST MONITORED	AND RECORDED?	YES NO
19) IS THE OPERATION OF THE AFTERBURNER DISCONTINU OZONE SEASON (SEPTEMBER 1 TO MAY 31)?	ED DURING THE NON-	YES NO

Emissions Calculations

					,	•	
			·				
			•	•			
	•						
			-				
					•		
•	-						
		. 7					
						•	
					-		
			•	·			
							•
		•					
					,		•
	•						
-			•		•		
	w.						
		4					
•							
			<i>:</i>	*			
		·					
						÷	
		4	e.	·			
	8						
	_						
	-					•	

East Balt Bakery - Chicago, IL East Balt Commissary, Inc.

Facility-Wide Emissio<mark>ns</mark>

Emission Unit Bakery Line #1 (with Oven) + Fugitive			10	Pollintar	Pollutante Emissions (fnv)	ons (tnv)		
Emission Unit Bakery Line #1 (with Oven) + Fuoritive				A OMBIGA	ILLO AMARAGOS	Cran Caro		
Emission Unit Bakery Line #1 (with Oven) + Fugitive			is a second	PM/PM ₁₀ /P				Max Individual
Bakery Line #1 (with Oven)	NOx	00	so_{x}	M _{2.5}	VOM	co_2e	Total HAP	HAP (Hexane)
+ Fugitive	2.46	0.52	0.01	0.19	5.45	2,974.49	0.05	0.04
					36.32			
Bakery Line #2 (with Oven)	4.91	1.03	0.03	0.37	7.04	5,922.55	0.09	0.09
+ Fugitive					46.96	22		
Catalytic Oxidizer	0.72	0.61	4.34E-03	0.05	0.04	872.97	1.36E-02	1.36E-02
Griddle (with Oven)	1.53	0.32	0.01	0.12	27.17	1,850.80	0.03	0.03
Total:	9,63	2.48	90.0	0.73	122.98	11,620.80	0.18	0.17

Project Emissions			х					
				Pollutar	Pollutants Emissions (tpy)	ons (tpy)	1	
			1	PM/PM ₁₀ /P				Max Individual
Emission Unit	NOx	00	SOx	$M_{2.5}$	VOM	CO_2e T	Total HAP	Total HAP HAP (Hexane)
Sakery Line #1 (with Oven)	2.46	2.46 0.52	0.01	0.19	5.45	2,974.49	0.05	0.04
+ Fugitive					36.32	5 6 8 42 2		
Catalytic Oxidizer	0.72	0.61	0.00	0.05	0.04	872.97	\leftarrow	1,36E-02
Total:	3.19	1.12	0.02	0.24	41.81	3,847.46	90.0	90'0

PAGE:49

East Balt Commissary, Inc. East Balt Bakery - Chicago, IL Bakery Line #1 (with Oven) Potential to Emit

Bakery Line #1 (with Oven) Inputs

8760	Annual Hours of Operation (hrs):
1000	Heat Content of Natural Gas (MMBtu/MMscf):
5,625	Oven Max Heat Input Capacity (MMBtu/hr):
23,464	Max Production Rate (tons bread/yr):

Bakery Line #1 (with Oven) Natural Gas Criteria Pollutant Emissions

	Emission Factor		Annual Emissions
Pollutants	(lb/MMscf) ¹	Hourly Emissions (lb/hr)	(tpy)
NO _x ²	100	0.56	2,46
205	21	0.12	0.52
SOx	9.0	0.00	0.01
PM/PM ₁₀ /PM _{2.5}	2'2	0.04	. 0.19
NOM	11	0,06	0.27

1. Emission factor obtained from AP-42 Chapter 1, Section 4, Table 1.4-2 (7/99). 2. Emission factor obtained from AP-42 Chapter 1, Section 4, Table 1.4-1 (7/98) for small bollers (<100 MMBtu/hr).

-	0,56 lb	hr	2.46 ton	year
	15		t1	
	1 MMscf	1000 MMBtu	1 lb	2000 ton
emissions):	100 lb	MMscf	8760 hr	year
Example Calculations (NO $_{\chi}$ emissions)	5.625 MMBtu	hr	0.56 lb	hr

Trinity Consultants 131401.0118

Bakery Line #1 (with Oven) Natural Gas Greenhouse Gas Emissions

	Emission Factor		Hourly Emissions	Annual Emissions
Pollutants	(Ib/MMscf) ¹	GWP	(lb/hr)	(tpy)
CO.	120000	1	675,00	2,956,50
G. G.	2.3	21	0.01	90'0
φ.N.	2.2	310	0.01	0.05
CO. P. 2		0.00	679,11	2,974.49

1. Emission factor obtained from AP-42 Chapter 1, Section 4, Table 1.4-2 (7/98).
2. Carbon Dioxide equivalent (CO₂e) emissions are calculated by multiplying mass emissions by each pollutant's global warming potential (GWP).

Example Calculations (CO₂ emissions):

5.625 MMBtu	120000 lb	1 MMscf	n	675,00 lb	q
hr	MMscf	1000 MMBtu			þr
675,00 lb	8760 hr	1 lb	ш	2,956.50	ton
hr	year	2000 ton			year

Example Calculations (CO 2 e emissions):

							tpy	
F		F		'n		Ħ	2,974.49 tpy	
675,00 lbs CO ₂ e/hr		0.27 lbs CO ₂ e/hr		3.84 lbs CO ₂ e/hr		Total: 679.11 lbs CO ₂ e/hr	п	
675,00		0.27		3.84		679.11	1 lb	2000 ton
11		n		11		Total:		2000
1 GWP	le co ₂	21 GWP	lb CH₄	310 GWP	Ib N ₂ O		8760 hr	year
675.00 lb CO ₂	щ	0.01 lb CH ₄	hr	0,01 lb N ₂ O	hr		679,11 lb CO ₂ e	hr

East Balt Commissary, Inc. East Balt Bakery - Chicago, IL Bakery Line #1 (with Oven) Potential to Emit

Bakery Line #1 (with Oven) Natural Gas HAP Pollutant Emissions

		Emission Factors	Hourly Emissions	Annual Emissions
Pollutant	CAS	(lb/MMscf) ¹	(lbs/hr)	(tpy)
Lead ²	7439-92-1	5.00E-04	2.81E-06	1,23E-05
2-Methylnapthalene	91-57-6	2,40E-05	1.35E-07	5.91E-07
3-Methylchloranthrene	56-49-5	1,80E-06	1.01E-08	4.43E-08
7-12-	57-97-6	1,60E-05	9,00E-08	3.94E-07
Acenaphthene	83-32-9	1,80E-06	1.01E-08	4.43E-08
Acenaphthylene	203-96-8	1,80E-06	1,01E-08	4,43E-08
Anthracene	120-12-7	2.40E-06	1,35E-08	5,91E-08
Benz(a)anthracene	56-55-3	1.80E-06	1,01E-08	4,43E-08
Benzene	71-43-2	2,10E-03	1,18E-05	5,17E-05
Benzo(a)pyrene	50-32-8	1.20E-06	6,75E-09	2,96E-08
Benzo(b)fluoranthene	205-99-2	1.80E-06	1,01E-08	4,43E-08
Benzo(g,h,i)perylene	191-24-2	1,205-06	6.75E-09	Z.96E-08
Benzo(k)fluoranthene	205-82-3	1.805-06	1,01E-08	4,43E-08
Chrysene	218-01-9	1.80E-06	1.01E-08	4,43E-08
Dibenzo(a,h)anthracene	53-70-3	1.20E-06	6,755-09	2.96E-08
Dichlorobenzene	25321-22-6	1.20E-03	6.75E-06	2,96E-05
Fluoranthene	206-44-0	3,00E-06	1,69E-08	7,39E-08
Fluorene	86-73-7	2,80E-06	1.58E-08	6,90E-08
Formaldehyde	20-00-0	7,50E-02	4.22E-04	1,85E-03
Hexane	110-54-3	1,805+00	1.01E-02	4.43E-02
Indeno(1,2,3-cd)pyrene	193-39-5	1,80E-06	1,01E-08	4,43E-08
Naphthalene	91-20-3	6.10E-04	3,43E-06	1,50E-05
Phenanathrene	85-01-8	1.70E-05	9,56E-08	4.19E-07
Pyrene	129-00-0	5.00E-06	2,81E-08	1.23E-07
Toluene	108-88-3	3,40E-03	1,91E-05	8.38E-05
Arsenic	7784-42-1	2,00E-04	1,13E-06	4.93E-06
Beryllium	7440-41-7	1.20E-05	6,75E-08	2.96E-07
Cadmium	7440-43-9	1.10E-03	6.19E-06	2.71E-05
Chromium	7440-47-3	1.40E-03	7,88E-06	3,45E-05
Cobalt	7440-48-4	8,40E-05	4.73E-07	2.07E-06
Manganese	7439-96-5	3.80E-04	2.14E-06	9'36E-06
Mercury	7439-97-6	2.60E-04	1,46E-06	6,41E-06
Nickel	7440-02-0	2,10E-03	1.18E-05	5,17E-05
Selenium	7782-49-2	2.40E-05	1.35E-07	5.91E-07
Total POM		8,52E-05	4.79E-07	2.10E-06
Total HAP		1.89E+00	1,06E-02	4.65E-02
Maximum Individual HAP (hexane)	AP (hexane)	1.80E+00	1.01E-02	4,43E-02

^{1.} Emission factor obtained from AP-42 Chapter 1, Section 4, Table 1.4-3 and 1.4-4 (7/98). 2. Emission factor obtained from AP-42 Chapter 1, Section 4, Table 1.4-2 (7/98).

Example Calculations (Hexane emissions):

5.625 MMBtu hr	1.80 lb MMscf	1000 MMBtu	II .	hr.	占
0.01 lb	8760 hr	1 lb	ī	0.04	ton
hr	year	2000 ton			year

PAGE 53

Bakery Line #1 (with Oven) Ethanol (VOM) Baking Emissions

(lb/hr) (tpy) (tpy)		Emission Factor	Hourly Emissions	Annual Emissions
12,36 33,11	Pollutants	(lb/ton baked bread) ¹	(lb/hr)	(tpy)
	MOV	12,36	33,11	145,01

1. Emission factor obtained from September 20-21, 2011 USEPA Method 25A Stack Test.

Example Calculations (Ethanol - VOM emissions):

	= 33,11 lb	hr	ton	year
	1 year	8760 hr	= 145,01 ton	
	\exists			
	lb	ton bread	1 lb	2000 ton
	12.36 lb	_	8760 hr	year
	펃		80	
Company of the contract of the	23464.000 tons bread	year	33.11 lb	hr
				ı

Bakery Line #1 (with Oven) Controlled VOM Emissions

	Natural Gas Emissions	Baking Emissions
	Uncontrolled Emissions	
Hourly Emissions (lb/hr)	0.06	33,11
Annual Emissions (tpy)	0.27	145.01
	Fugitive Emissions	
Capture Efficiency (%)	75%	75%
Hourly Emissions (lb/hr)	0.02	8.28
Annual Emissions (tpy)	0.07	36,25
	Controlled Emissions	
Control Efficiency (%)	95%	%26
Hourly Emissions (lb/hr)	2,32E-03	1.24
Annual Emissions (tpy)	0.01	5,44

1. Capture efficiency based on conservative Engineering Estimate 2. Control Efficiency based on Manufacturer Guarantee,

0,07 ton year 0.02 lb hr 1 lb 2000 ton Example Calculations (Natural Gas Emission Fugitive): 75% capture) year 8760 hr 0.062 lb hr 0.02 lb hr

Example Calculations (Natural Gas Emission Controlled):

= 2,32E-03 lb	hr	0.01 ton	year
95% capture)		"	
95%		1 lb	2000 ton
(1 .			2
0,02 lb	hr	8760 hr	year
0.062 lb -	hr	2.32E-03 lb	hr

PAGE 54

Bakery Line #1 (with Oven) Total Emissions

	Uncon	Uncontrolled	Controlled	olled
	Hourly Emissions	Annual Emissions	Hourly Emissions	Annual Emissions
Pollutants	(lb/hr)	(tpy)	(lb/hr)	(tpy)
		Criteria Pollutant Emissions		
NO _x ²	92'0	2,46	95.0	2,46
CO2	0,12	0,52	0,12	0.52
200	0.00	0.01	00'0	10.01
PM	0.04	0.19	0,04	0,19
MOV	24.88	108,96	1,24	5,45
VOM Fugitive	8,29	36,32	8,29	36.32
9		Greenhouse Gas Emissions		
co,	675,00	2,956,50	675.00	2,956.50
CH.	0,01	90.0	0.01	90'0
N,0	0,01	0.05	0.01	0.05
CO,e	679.11	2,974.49	679.11	2,974.49
		HAP Emissions		
Total HAP Maximum	0.01	0.05	0.01	0.05
Individual HAP	95			
(hexane)	0.01	0.04	0.01	0.04

Trinity Consultants 131401,0118

PAGE 55

East Balt Bakery - Chicago, IL Bakery Line #2 (with Oven) Potential to Emit East Balt Commissary, Inc.

Bakery Line #2 (with Oven) Inputs

ı	
Max Production Rate (tons bread/yr):	30,305
Oven Max Heat Input Capacity (MMBtu/hr):	11,2
Heat Content of Natural Gas (MMBtu/MMscf):	1000
Annual Hours of Operation (hrs):	8760

Bakery Line #2 (with Oven) Natural Gas Emissions

a company	Emission Factor		Annual Emissions
Pollutants	(lb/MMscf) ¹	Hourly Emissions (Ib/hr)	(tpy)
NO _x ²	100	1,12	4.91
رر0 ₂	21	0.24	1.03
SOx	9'0	0.01	0.03
PM/PM ₁₀ /PM ₂₅ 3	7,6	60'0	0.37
NOV	11	0,12	0.54

Emission factor obtained from AP-42 Chapter 1, Section 4, Table 1.4-2 (7/98).
 Emission factor obtained from AP-42 Chapter 1, Section 4, Table 1.4-1 (7/98) for small boilers (<100 MMBuJ/hr).
 All PM (total, condensable, and filterable) is assumed to be less than 1.0 micrometer in diameter per AP-42 Chapter 1.4 (7/98), Table 1.4-2, Footnote c. Therefore, the PM emission factor provided was used to estimate PM, PM10, and PM2.5.

,	1.12 lb	hr	4.91 ton	year
	II		П	
	1 MMscf	1000 MMBtu	1 lb	2000 ton
emissions):	100 lb	MMscf	8760 hr	year
Example Calculations (NO 3	11.200 MMBtu	hr	1,12 lb	hr

Bakery Line #2 (with Oven) Natural Gas Greenhouse Gas Emissions

	1 7 11 21	and and an			
(Ib/MMscf) ¹ GWP (Ib/hr) (4p) (4p) (4p) (4p) (4p) (4p) (4p) (4p		Emission Factor		Hourly Emissions	Annual Emissions
120000 1 1,344.00 2.3 21 0.03 2.2 310 0.02 1,352.18	ts	(Ib/MMscf) ¹	GWP	(lb/hr)	(tpy)
21 0.03 310 0.02 1,352.18		120000	1	1,344,00	5,886.72
310 0.02 1,352.18		2.3	21	0.03	0,11
		2.2	310	0.02	0.11
				1,352.18	5,922.55

1. Emission factor obtained from AP-42 Chapter 1, Section 4, Table 1.4-2 (7/98).
2. Carbon Dioxide equivalent (CO₂e) emissions are calculated by multiplying mass emissions by each pollutant's global warming potential (GWP).

Example Calculations (CO₂ emissions):

1,344,00 lb	5,886.72 ton year
11	n.
1 MMscf 1000 MMBtu	1 lb 2000 ton
1E+05 lb MMscf	8760 hr year
11.200 MMBtu 1E+05 lb hr hr	1,344.00 lb

Example Calculations (CO₂ e emissions):

s CO ₂ e/hr	0.54 lbs CO ₂ e/hr	7,64 lbs CO ₂ e/hr	s CO ₂ e/hr	= 5,922,55 tpy	
1344,00 lbs CO ₂ e/hr	0.54 lb	7,64 lb	Total: 1352,18 lbs CO ₂ e/hr	1 lb 2000 ton	•
1000	H. *	u C	7	_	
1 GWP Ib CO ₂	21 GWP 1b CH4	310 GWP	_	8760 hr year	
1,344.00 lb CO ₂	0.03 lb CH ₄	0.02 lb N ₂ 0	*	1,352,18 lb CO ₂ e	

East Balt Commissary, Inc.
East Balt Bakery - Chicago, IL
Bakery Line #2 (with Oven) Potential to Emit

Bakery Line #2 (with Oven) Natural Gas HAP Pollutant Emissions

		Emission Factors	Hourly Emissions	Annual
Pollutant	CAS	(lb/MMscf) ¹	(lbs/hr)	Emissions (tpy)
Lead ²	7439-92-1	5,00E-04	5.60E-06	2.45E-05
2-Methyinapthalene	91-57-6	2,40E-05	2.69E-07	1,18E-06
3-Methylchloranthrene	56-49-5	1,80E-06	2,02E-08	8,83E-08
7-12-	57-97-6	1.60E-05	1,79E-07	7,85E-07
Acenaphthene	83-32-9	1.80E-06	2.02E-08	8.835-08
Acenaphthylene	203-96-8	1.805-06	2,02E-08	8.83E-08
Anthracene	120-12-7	2,40E-06	2,69E-08	1.18E-07
Benz(a)anthracene	56-55-3	1,805-06	2.02E-08	8.83E-08
Benzene	71-43-2	2.10E-03	2.35E-05	1.03E-04
Benzo(a)pyrene	50-32-8	1,20E-06	1,34E-08	5.896-08
Benzo(b)fluoranthene	205-99-2	1.80E-06	2,02E-08	8.835-08
Benzo(g,h,i)perylene	191-24-2	1.20E-06	1,34E-08	5,89E-08
Benzo(k)fluoranthene	205-82-3	1.80E-06	2,02E-08	8.83E-08
Chrysene	218-01-9	1,80E-06	2,02E-08	8,83E-08
Dibenzo(a,h)anthracene	53-70-3	1,20E-06	1,34E-08	5.89E-08
Dichlorobenzene	25321-22-6	1,20E-03	1,34E-05	5.89E-05
Fluoranthene	206-44-0	3,00E-06	3,36E-08	1.47E-07
Fluorene	86-73-7	2,805-06	3,145-08	1,37E-07
Formaldehyde	20-00-0	7.50E-02	8.40E-04	3.68E-03
Нехапе	110-54-3	1.80E+00	2,02E-02	8,83E-02
Indeno(1,2,3-cd)pyrene	193-39-5	1,80E-06	2,02E-08	8.83E-08
Naphthalene	91-20-3	6,10E-04	6,83E-06	2,99E-05
Phenanathrene	85-01-8	1,70E-05	1.90E-07	8,345-07
Pyrene	129-00-0	5.00E-06	5.60E-08	2.45E-07
Toluene	108-88-3	3.40E-03	3,81E-05	1.67E-04
Arsenic	7784-42-1	2.00E-04	2.24E-06	9.81E-06
Beryllium	7440-41-7	1,20E-05	1.34E-07	5,89E-07
Cadmium	7440-43-9	1,10E-03	1,23E-05	5,40E-05
Chromium	7440-47-3	1,40E-03	1,57E-05	6.87E-05
Cobalt	7440-48-4	8.40E-05	9.41E-07	4.12E-06
Manganese	7439-96-5	3,80E-04	4,26E-06	1.86E-05
Mercury	7439-97-6	2.60E-04	2.91E-06	1.28E-05
Nickel	7440-02-0	2.10E-03	2.35E-05	1.03E-04
Selenium.	7782-49-2	2,40E-05	2.69E-07	1.18E-06
Total POM		8,52E-05	9.54E-07	4.18E-06
Total HAP		1.89E+00	2.11E-02	9.26E-02
Maximum Individual HAP (hexane)	AP (hexane)	1,80E+00	2.02E-02	8.83E-02

^{1.} Emission factor obtained from AP-42 Chapter 1, Section 4, Table 1.4-3 and 1.4-4 (7/98), 2, Emission factor obtained from AP-42 Chapter 1, Section 4, Table 1.4-2 (7/98).

PAGE 58

East Balt Commissary, Inc. East Balt Bakery - Chicago, IL Bakery Line #2 (with Oven) Potential to Emit

Example Calculations (Hexane emissions):

hr	1.80 lb MMscf	1 MMscf 1000 MMBtu	n	0.02 lb
0,02 lb	8760 hr	1 lb	11	0,09 ton
hr	year	2000 ton		year

East Balt Bakery - Chicago, IL Bakery Line #2 (with Oven) Potential to Emit East Balt Commissary, Inc.

Bakery Line #2 (with Oven) Ethanol (VOM) Baking Emissions

		1	
	Emission Factor	Hourly Emissions	Annual Emissions
Pollutants	(lb/ton baked bread) ¹	(lb/hr)	(tpy)
MOV	12.36	42.76	187.28
, OUI	14100		

1. Emission factor obtained from September 20-21, 2011 USEPA Method 25A Stack Test.

Example Calculations (Ethanol - VOM emissions):

	= 42.76 lb	hr	ton	year
	1 year	8760 hr	= 187,28 ton	
tendential control of	6 lb	ton bread	1 1 lb	2000 ton
	id 12.36 lb	_	8760 hr	year
לפונטיפייונים ויוס ל - זמומוחבן פוזטומומנים סעונוזעם	30305,000 tons bread	year	42.76 lb	hr

Daller J. British and John St. British and J. St. B		
	Natural Gas Emissions	Baking Emissions
	Uncontrolled Emissions	
Hourly Emissions (lb/hr)	0.12	42.76
Annual Emissions (tpy)	0.54	187.28
	Fugitive Emissions	
Capture Efficiency (%)	75%	75%
Hourly Emissions (lb/hr)	0.03	10,69
Annual Emissions (tpy)	0,13	46,82
	Controlled Emissions	
Control Efficiency (%)	95%	%56
Hourly Emissions (lb/hr)	4,62E-03	1.60
Annual Emissions (tpy)	0,02	7.02

1. Capture efficiency based on conservative Engineering Estimate 2. Control Efficiency based on Manufacturer Guarantee.

Example Calculations (Natural Gas Emission Fugitive):

	0,03 lb	Лr	= 0.13 ton	year
,	75% capture) =	-	1 lb	2000 ton
	(1 - 75%)		8760 hr	year
	0.123 lb	hr	0.03 lb	hr
		İ		l

Example Calculations (Natural Gas Emission Controlled):

= 4.62E-03 Ib	'n	200	0,02	year
95% capture)		1	1	
95%		F	T ID	2000 ton
				20
0.03 Ib	hr	10000	5/60 Nr	year
0.123 lb -	hr	11. 10. 20.7 11.	4,62E-U3 10	hr

Bakery Line #2 (with Oven) Total Emissions

	Uncor	Uncontrolled	Controlled	lled
	Hourly Emissions	Annual Emissions	Hourly Emissions	Annual
Pollutants	(lb/hr)	(tpy)	(lb/hr)	Emissions (tpy)
	3	Criteria Pollutant Emissions		
NO _x ²	1.12	4.91	1.12	4.91
CO ₂	0.24	1,03	0.24	1.03
SO.	0,01	0.03	0,01	0.03
PM	0.09	0,37	60'0	0.37
NOV	32,16	140.87	1,61	7.04
VOM Fugitive	10.72	46,96	10.72	46,96
0		Greenhouse Gas Emissions		
co,	1,344.00	5,886,72	1,344.00	5,886.72
CH,	0,03	0.11	0.03	0,11
N,O	0.02	0.11	0.02	0,11
CO,e	1,352,18	5,922,55	1,352.18	5,922.55
		HAP Emissions		
Total HAP	2,11E-02	9,26E-02	0,02	60.0
Maximum	-			
Individual HAP	599			
(hexane)	2.02E-02	8.83E-02	0.02	60'0

East Balt Commissary, Inc. East Balt Bakery - Chicago, IL Thermal Oxidizer Potential to Emit

Catalytic Oxidizer Inputs

Maximum Heat Input Rating:	1.7	MMBtu/hr
"	0.002	MMscf/hr

1. Natural Gas consumption converted to therms/yr using conversion factors heat content of natural gas received at East Balt).

1000 MMBtu/MMscf (assumed lowest

Catalytic Oxidizer Criteria Pollutant Emissions

Pollutant	Emission Factors (lb/MMscf) ¹	Hourly Emissions	Annual Emissions (tpy)
NO _X	100	0.17	0.72
co	84	0.14	0.61
SO ₂ ³	0.60	9.90E-04	4.34E-03
PM/PM ₁₀ /PM _{2.5} ²	7.6	0.01	0.05
VOM ³	5.5	0.01	0.04

- 1. Emission factors from AP-42 Chapter 1.4 (7/98), Table 1.4-1.
- 2. All PM (total, condensable, and filterable) is assumed to be less than 1.0 micrometer in diameter per AP-42 Chapter 1.4 (7/98),

Table 1.4-2, Footnote c. Therefore, the PM emission factor provided was used to estimate PM, PM₁₀, and PM_{2.5}.

3. Emission factor obtained from AP-42 Chapter 1, Section 4, Table 1.4-2 (7/98).

Example Emission Calculation (SO ...)

EXO	ıтріе Emission	i Caiculation (2	SU_2J			Ŧ			
	0.002	MMscf	0.6	0 Ib	=	9.90E-04	lbs/hr		
		hr		MMs	cf				
	9.90E-04	lbs	876	0 hrs	1	ton] =	4.34E-03	tpy
		hr		year	2000	lb '	1.		

Catalytic Oxidizer Greenhouse Gas Emissions

Pollutant	Emission Factors (lb/MMscf) ¹	GWP	Hourly Emissions (lbs/hr)	Annual Emissions (tpy)
. CO ₂	120,000	1	198.00	867.24
CH₄	2.3	21	3.80E-03	0.02
N ₂ O	2.4	310	3.96E-03	0.02
CO₂e²		:	199.31	872.97

- 1. Emission factor obtained from AP-42 Chapter 1, Section 4, Table 1.4-2 (7/98).
- factors~2.2046~lb/kg~and~1.028~MMBtu/MMscf~(default~high~heat~value~for~natural~gas~in~40~CFR~98).
- 2. Carbon Dioxide equivalent (CO_2e) emissions are calculated by multiplying mass emissions by each pollutant's global warming potential (GWP).

Example Emission Calculation (CO 2)

0.002	MMscf	120000.00	lb	_ =		198.00	lbs/hr	
	hr		MMscf	7				
	*	_	•					
198.00	lbs	8760	hrs		ton	=	÷	867.24
	hr		year	2000	lb			
			•					
Example Emission	Calculation (C	.O _z e)						
867.24	tons CO ₂	1	GWP	=		867.24	tons CO ₂ e/yr	•
	hr		lb CO ₂					
0.02	tons CH4	21	GWP	=		0.35	tons CO2e/yr	-
	hr		lb CH₄					
				•				
0.02	tons N ₂ O	310	GWP	=		5.38	tons CO2e/yr	•
	hr		lb N ₂ O	1				
		ı		' +				
				Totale		977.07	tone CO a hi	

Total: 872.97 tons CO₂e/yr

East Balt Commissary, Inc. East Balt Bakery - Chicago, IL Thermal Oxidizer Potential to Emit

Catalytic Oxidizer HAP Pollutant Emissions

		Factors	Hourly Emissions	Annual Emissions
Pollutant	CAS	(lb/MMscf) ¹	(lbs/hr)	(tpy)
Lead ²	7439-92-1	5.00E-04	8.25E-07	3.61E-06
2-Methylnapthalene	91-57-6	2.40E-05	3.96E-08	1.73E-07
3-Methylchloranthrene	56-49-5	1.80E-06	2.97E-09	1.30E-08
7-12-Dimethylbenz(a)anthracene	57-97-6	1.60E-05	2.64E-08	1.16E-07
Acenaphthene	83-32-9	1.80E-06	2.97E-09	1.30E-08
Acenaphthylene	203-96-8	1.80E-06	2.97E-09	1.30E-08
Anthracene	120-12-7	2.40E-06	3.96E-09	1.73E-08
Benz(a)anthracene	56-55-3	1.80E-06	2.97E-09	1.30E-08
Benzene	71-43-2	2.10E-03	3.47E-06	1.52E-05
Benzo(a)pyrene	50-32-8	1.20E-06	1.98E-09	8.67E-09
Benzo(b)fluoranthene	205-99-2	1.80E-06	2.97E-09	1.30E-08
Benzo(g,h,i)perylene	191-24-2	1.20E-06	1.98E-09	8.67E-09
Benzo(k)fluoranthene	205-82-3	1,80E-06	2.97E-09	1.30E-08
Chrysene	218-01-9	1.80E-06	2.97E-09	1.30E-08
Dibenzo(a,h)anthracene	53-70-3	1.20E-06	1.98E-09	8.67E-09
Dichlorobenzene	25321-22-6	1.20E-03	1.98E-06	8.67E-06
Fluoranthene	206-44-0	3.00E-06	4.95E-09	2.17E-08
Fluorene	86-73-7	2.80E-06	4.62E-09	2.02E-08
Formaldehyde	50-00-0	7.50E-02	1.24E-04	5.42E-04
Hexane	110-54-3	1.80E+00	2.97E-03	1.30E-02
Indeno(1,2,3-cd)pyrene	193-39-5	1.80E-06	2.97E-09	1.30E-08
Naphthalene	91-20-3	6.10E-04	1.01E-06	4.41E-06
Phenanathrene	85-01-8	1.70E-05	2.81E-08	1.23E-07
Pyrene	129-00-0	5.00E-06	8.25E-09	3.61E-08
Toluene	108-88-3	3,40E-03	5.61E-06	2.46E-05
Arsenic	7784-42-1	2.00E-04	3.30E-07	1.45E-06
Beryllium	7440-41-7	1.20E-05	1.98E-08	8.67E-08
Cadmium	7440-43-9	1.10E-03	1.82E-06	7.95E-06
Chromium	7440-47-3	1.40E-03	2.31E-06	1.01E-05
Cobalt	7440-48-4	8.40E-05	1.39E-07	6.07E-07
Manganese	7439-96-5	3.80E-04	6.27E-07	2.75E-06
Mercury	7439-97-6	2.60E-04	4.29E-07	1.88E-06
Nickel	7440-02-0	2.10E-03	3.47E-06	1.52E-05
Selenium	7782-49-2	2.40E-05	3.96E-08	1.73E-07
Total POM		8.52E-05	1.41E-07	6.16E-07
Total HAP		1.89E+00	3.12E-03	1.36E-02
Maximum Individual HAP (he	exane)	1.80E+00	2.97E-03	1.36E-02

^{1.} Emission factor obtained from AP-42 Chapter 1, Section 4, Table 1.4-3 and 1.4-4 (7/98).

Example Emission Calculation (2-Methylnapthalene)

	0.002	MMscf	2.40E-05	lb	=	3.96E-08	lbs/hr	
_		min		MMscf	1			
	3.96E-08	lb	8760	hrs	Î.	ton	=	1.73E-07 tpy
_	n ,	hr		year	2000	lb	1	

^{2.} Emission factor obtained from AP-42 Chapter 1, Section 4, Table 1.4-2 (7/98).

East Balt Commissary, Inc. East Balt Bakery - Chicago, IL Thermal Oxidizer Potential to Emit

Total Emissions

	Uncon	trolled
	Hourly Emissions	Annual Emissions
Pollutants	(lb/hr)	(фу)
	Criteria Pollutant Emi	ssions
NO _X ²	0.17	0.72
CO ²	0.14	0.61
so _x	0.00	0.00
PM	0.01	0.05
VOM	0.01	0.04
	Greenhouse Gas Emis.	sions
CO ₂	198.00	867.24
CH ₄	0.00	0.02
N ₂ O	0.00	0.02
CO₂e	199.31	872.97
	HAP Emissions	
Total HAP Maximum	3.12E-03	1.36E-02
Individual		
HAP (hexane)	2.97E-03	1.36E-02

PAGE 64

East Balt Commissary, Inc. East Balt Bakery - Chicago, IL Griddle (with Oven) Potential to Emit

Griddle (with Oven) Inputs

Max Production Rate (tons bread/vr):	: 12,264
Oven Max Heat Input Capacity (MMBtu/hr):	
Heat Content of Natural Gas (MMBtu/MMscf	1000
Annual Hours of Operation (hrs):	928

Griddle (with Oven) Natural Gas Emissions

	Emission Factor		Annual Emissions
Pollutants	(Ib/MMscf) ¹	Hourly Emissions (Ib/hr)	(tpy)
NO _x ²	100	0.35	1,53
co ^z	21	0.07	0,32
SO.	9.0	0.00	0.01
PM/PM.,/PM,		0,03	0,12
MOV	11	0.04	0.17

1. Emission factor obtained from AP-42 Chapter 1, Section 4, Table 1.4-2 (7/98). 2. Emission factor obtained from AP-42 Chapter 1, Section 4, Table 1.4-1 (7/98) for small boilers (<100 MMBtu/hr).

scf = 0.35 lb	Btu hr	= 1.53 ton	year
1 MMscf	1000 MMBt	1 lb	2000 ton
t entissionsy.	MMscf	8760 hr	year
3,500 MMBtu 100 lb	hr	0.35 lb	hr

Griddle (with Oven) Natural Gas Greenhouse Gas Emissions

	Emission Factor		Hourly Emissions	Annual Emissions
Pollutants	(Ib/MMscf) ¹	GWP	(lb/hr)	(tpy)
CO2	000021	Ţ	420.00	1,839,60
CH4	2.3	21	0,01	0,04
N_2O	2.2	310	0.01	0'03
CO ₂ e ²			422.56	1,850,80

1. Emission factor obtained from AP-42 Chapter 1, Section 4, Table 1.4-2 (7/98).

2. Carbon Dioxide equivalent (CO,e) emissions are calculated by multiplying mass emissions by each poilutant's global warming potential (GWP).

Example Calculations (CO₂ emissions):

	420,00 lb	hr	-	1,839.60 ton	year
	II			n	
-	1 MMscf	1000 MMBtu		1 lb	2000 ton
	1E+05 lb	MMscf		8760 hr	year
	3,500 MMBtu 1E+0	hr		420,00 lb	hr

Example Calculations (CO 2 e emissions):

۶		
lbs CO ₂ e/hr	lbs CO ₂ e/hr	Total: 422,56 lbs CO2e/hr
0.17	2.39	422,56
11		 Total:
21 GWP Ib CH4	310 GWP	17
0.01 lb CH, hr	0.01 lb N ₂ 0	-
	21 GWP 1b CH4	21 GWP = 16 CH4 = 310 GWP = 1h N ₂ O

1,850.80 tpy

422.56 lb CO₂e 8760 hr

Trinity Consultants 131401.0118

PAGE 66

East Balt Commissary, Inc. East Balt Bakery - Chicago, IL Griddle (with Oven) Potential to Emit

Griddle (with Oven) Natural Gas HAP Pollutant Emissions

		Emission Factors	Hourly Emissions	Annual
Pollutant	CAS	(lb/MMscf) ¹	(lbs/hr)	Emissions (tpy)
Lead ²	7439-92-1	5.00E-04	1.75E-06	7,67E-06
2-Methylnapthalene	91-57-6	2,40E-05	8.40E-08	3.68E-07
3-Methylchloranthrene	56-49-5	1,80E-06	6,30E-09	2.76E-08
7-12-	57-97-6	1,60E-05	5,60E-08	2.45E-07
Acenaphthene	83-32-9	1,80E-06	6.30E-09	2.76E-08
Acenaphthylene	203-96-8	1.80E-06	6'30E-09	2.76E-08
Anthracene	120-12-7	2.40E-06	8.40E-09	3,68E-08
Benz(a)anthracene	56-55-3	1.80E-06	6.30E-09	2,76E-08
Benzene	71-43-2	2,10E-03	7,35E-06	3.22E-05
Benzo(a)pyrene	50-32-8	1,20E-06	4,20E-09	1.84E-08
Benzo(b)fluoranthene	205-99-2	1,80E-06	6.30E-09	2.76E-08
Benzo(g,h,i)perylene	191-24-2	1.20E-06	4.20E-09	1.84E-08
Benzo(k)fluoranthene	205-82-3	1.80E-06	6.30E-09	2,76E-08
Chrysene	218-01-9	1,80E-06	6'30E-09	2.76E-08
Dibenzo(a,h)anthracene	53-70-3	1,20E-06	4.20E-09	1,84E-08
Dichlorobenzene	25321-22-6	1,20E-03	4.20E-06	1,84E-05
Fluoranthene	206-44-0	3,00E-06	1,05E-08	4,60E-08
Fluorene	86-73-7	2,80E-06	60-B08'6	4.29E-08
Formaldehyde	20-00-0	7,50E-02	2,63E-04	1.15E-03
Hexane	110-54-3	1.80E+00	6.30E-03	2.76E-02
Indeno(1,2,3-cd)pyrene	193-39-5	1.80E-06	6'30E-09	2.76E-08
Naphthalene	91-20-3	6.10E-04	2.14E-06	9,35E-06
Phenanathrene	85-01-8	1,70E-05	5,95E-08	2,61E-07
Pyrene	129-00-0	5.00E-06	1.75E-08	7.67E-08
Toluene	108-88-3	3,40E-03	1,19E-05	5.21E-05
Arsenic	7784-42-1	2.00E-04	7.00E-07	3.07E-06
Beryllium	7440-41-7	1,20E-05	4.20E-08	1.84E-07
Cadmium	7440-43-9	1,10E-03	3,85E-06	1,69E-05
Chromium	7440-47-3	1,40E-03	4,90E-06	2.15E-05
Cobalt	7440-48-4	8.40E-05	2.94E-07	1.29E-06
Manganese	7439-96-5	3,80E-04	1,33E-06	5,83E-06
Mercury	7439-97-6	2,60E-04	9,10E-07	3,99E-06
Nickel	7440-02-0	2,10E-03	7,35E-06	3.22E-05
Selenium	7782-49-2	2,40E-05	8,40E-08	3.68E-07
Total POM		8,52E-05	Z.98E-07	1,31E-06
Total HAP		1.89E+00	6,61E-03	2.89E-02
Mayimum Individual HAP (hexane)	AP (hexane)	1,80E+00	6.30E-03	2.76E-02

1. Emission factor obtained from AP-42 Chapter 1, Section 4, Table 1,4-3 and 1,4-4 (7/98).
2. Emission factor obtained from AP-42 Chapter 1, Section 4, Table 1,4-2 (7/98).

East Balt Commissary, Inc. East Balt Bakery - Chicago, IL Griddle (with Oven) Potential to Emit

٠.
100
=
.0
C)
٠.5
≅
8
-
~=
≈
≈
Ö
\mathbf{T}
_
S
Ĕ
===
Ĕ
(on
ations
ations
alculations
ılculations
alculations
Calculations
le Calculations
mple Calculations
nple Calculations
xample Calculations
ample Calculations

	0,01 lb	hr	0.03 ton		year
	IJ		II		
	1 MMscf	1000 MMBtu	٠ ٣		2000 ton
	1,80 lb	MMscf	8760 hr	111 00 /0	year
formation and the second and the sec	3.500 MMBtu	hr	1 10 O	0,00	h

PAGE 68

Griddle (with Oven) Ethanol (VOM) Baking Emissions

	Emission Factor	Hourly Emissions	Annual Emissions
Pollutants	(Ib/ton baked bread) ¹	(lb/hr)	(tpy)
MOV	4.404	6.17	27.01

1. Emission factor obtained from June 7-9, 2011 USEPA Method 25A Stack Test.

ample Calculations (Ethanol - VOM emissions):

1 year = 6.17 lb	8760 hr	= 27.01 ton	year
lb	ton bread	1 lb	2000 ton
ad 4,404 l		8760 hr	year
12264,000 tons bread	year	6.17 lb	hr

Griddle (with Oven) Total Emissions

	Uncon	Uncontrolled
	Hourly Emissions	Annual Emissions
Pollutants	(lb/hr)	(tpy)
	Criteria Pollutant Emissions	ssions
NO _x 2	0.35	1.53
CO2	0.07	0.32
SOx	00'0	0.01
PM	0.03	0.12
NOM	6.20	27.17
	Greenhouse Gas Emissions	sions
CO ₂	420,00	1,839.60
CH4	0,01	0.04
N ₂ O	0,01	0.03
CO ₂ e	422.56	1,850.80
	HAP Emissions	
Total HAP	6,61E-03	0.03
Maximum		
Individual HAP		
(hexane)	6.30E-03	0.03

Lowest Achievable Emission Rate (LAER) Analysis

LOWEST ACHIEVABLE EMISSION RATE (LAER) ANALYSIS

East Balt Commissary, LLC > Chicago, Illinois

Prepared By:

TRINITY CONSULTANTS

1S660 Midwest Road Suite 250 Oakbrook Terrace, IL 60181 (630) 495-1470

November_2013

Project 131401.0127

Environmental solutions delivered uncommonly well

TABLE OF CONTENTS

1. INTRODUCTION	1-3
1 1 Overview	
1.2. Facility Description	1-4
A LOWEST ASSURAGE TANSSION DATE (LATD) ANALYSIS	2.4
2.1. Review of State Implementation Plans	2-1
2.2. Potential VOM Control Technologies	2-1
2.2.1. Thermal Oxidizer	2-2
2.2.2. Catalytic Oxidizer	
2.2.3. Wet Packed Bed Scrubber	
2.2.4. Carbon Adsorption	
2.2.5. Biofiltration	2-3
2.2.6. Refrigerated Condensers	2-3
2.2.7. Good Combustion Practices	2-3
2.1. Review of State Implementation Plans 2.2. Potential VOM Control Technologies 2.2.1. Thermal Oxidizer 2.2.2. Catalytic Oxidizer 2.2.3. Wet Packed Bed Scrubber 2.2.4. Carbon Adsorption 2.2.5. Biofiltration 2.2.6. Refrigerated Condensers 2.2.7. Good Combustion Practices 2.3. Selection of LAER	2-4
3. ALTERNATIVES ANALYSIS	3-1
3.1. Alternative Sites	3-1
RRI C TABLES	· 1

Figure 2-1. Area Map of the Chicago Facility

1-4

1.1. OVERVIEW

East Balt Commissary, LLC (East Balt) operates an existing bakery that produces yeast leavened products on three (3) specially configured manufacturing lines located at 1801 West 31st Place in Chicago, Illinois (Chicago facility). The Chicago facility currently operates under Clean Air Act Permit Program (CAAPP) Permit No. 031600FYB, issued by the Illinois Environmental Protection Agency (IEPA) on August 30, 2004, and produces breads, buns, and miscellaneous bakery products. Significant emission units at the source include two (2) bakery lines, each with an oven, identified as emission unit 01 and 02, respectively, and a griddle with an oven, identified as emission unit 03. Additional insignificant activities, including, but not limited to, natural gas-fired boilers, heaters, storage silos, and a flour unloading system are also included in the current CAAPP. The Chicago facility is considered to be a major source of volatile organic material (VOM) emissions with a source-wide VOM emission limit of 200 tons per year (tpy).

The bakery lines are used to produce a variety of baked goods. This bakery production is a highly automated process where all the mixing, blending, working and dividing are interconnected by conveyor throughout the process. Bread and bread products consist of four main ingredients: flour, water, yeast and salt. Other physical properties of the product are obtained by adding ingredients such as sweeteners, shortening, enzymes, and preservatives. Flour, the main ingredient, is stored in silos and is conveyed through pipes to batch weighers, after which water, yeast, and other ingredients are added in a mixer.

After mixing, the dough is placed in large wheeled tubs and kept in a room where the temperature and humidity are closely controlled to allow the fermentation process to occur. During this process, the yeast reproduces under aerobic conditions forming carbon dioxide gas (49 percent), an almost equivalent amount of liquid ethanol (47 percent) and about 4 percent of other various compounds. With some recipes, additional ingredients including yeast and flour are added to process after fermentation. In these cases, the initial mix is called a 'sponge,' with the extra ingredients referred to as a 'spike' and the final mixed product called 'dough.'

After fermentation, the dough is placed in a mixer where the minor ingredients are added. The dough is then conveyed through a divider and rounded, dusted with flour, and placed into pans. The pans are conveyed into a proof box. The proof box is a well-insulated chamber, free of drafts where the time, temperature, and humidity are controlled. These conditions allow the dough to rise again by accelerating the yeast activity. A minor amount of the ethanol is liberated in the proof boxes; however, the exhausts from these chambers are minimized to preserve temperature and humidity conditions, and ethanol (VOM) emissions are considered insignificant. After proofing, the pans are conveyed into baking ovens. The ovens combust natural gas exclusively, with a firing rate that exceeds 0.3 million British thermal units per hour (MMBtu/hr), but is less than 10 MMBtu/hr. During the baking process, the yeast suffers a thermal death, and no further gases are created. Approximately 50 percent of the liquid ethanol produced during fermentation is vaporized during the baking process. The baking process is complete when the internal temperature of the loaf reaches the boiling point of ethanol. After baking, the loaf is removed from the pan and is allowed to cool prior to packaging. Bakery line #1 was installed and began operation in 1978, and the oven of Bakery Line #1 was replaced in February 1995. Bakery line #2 with oven was installed and started operation in 1967. Griddle with oven was installed and started operation in 1977.

In response to recent performance testing conducted at the Chicago facility, as requested in a Section 114 letter from the United States Environmental Protection Agency (USEPA), East Balt intends to enter into a Consent Decree agreement with the USEPA and the IEPA regarding alleged violations of the Clean Air Act (CAA). East Balt recognizes that the Consent Decree allege will that the Chicago facility should have triggered Major Source

Non-Attainment New Source Review (NANSR) for VOM emissions during the installation of the new Bakery Line #1 oven in 1995 based on the VOM emission rate obtained during performance testing conducted on September 20 and 21, 2011. As required under Major Source NANSR regulations, East Balt must obtain a construction permit prior to installing a control device to limit VOM emissions from Bakery Line #1. These regulations require the application to contain a demonstration that the control technology to be used to control VOM emissions meets the standard of the Lowest Achievable Emissions Rate (LAER) as well as an Alternatives Analysis to demonstrate why the facility must be located in the non-attainment area. It is important to note that East Balt is voluntarily installing LAER-compliant VOM emission controls on Bakery Line #2 in addition to Bakery Line #1. East Balt anticipates the addition of the control device on Bakery Line #2 will serve as a supplemental environmental project (SEP) as part of the enforcement settlement with USEPA and IEPA.

1.2. FACILITY DESCRIPTION

The Chicago facility is located in Cook County, Illinois, which is considered to be in non-attainment with ozone and particulate matter with an aerodynamic diameter of less than 2.5 microns ($PM_{2.5}$). Figure 2-1 provides a map of the area surrounding the Chicago facility. The approximate central Universal Transverse Mercator (UTM) coordinates for the facility are 444,220 meters (m) East and 4,631,760 m North in UTM Zone 16 (NAD 83).

Figure 1-1. Area Map of the Chicago Facility

2. LOWEST ACHIEVEABLE EMISSION RATE (LAER) ANAYSIS

Cook County, Illinois, is classified as a marginal non-attainment area for ozone (under the 2008 8-hour standard). Therefore emissions of VOM, a precursor to ozone, are subject to NANSR, pursuant to 35 Illinois Administrative Code (IAC) 203, Subpart B. Emissions of nitrogen oxides (NO_X) are not subject to NANSR for this project because emission levels are below the significant emission rate (SER) of 40 tpy. In a marginal non-attainment area for ozone, a source is considered a major source if it has a potential to emit VOM and/or NO_X at a rate of 100 tpy or greater, as defined in 35 IAC 203.206(b)(1)(A) and (b)(3)(A). As a major source of VOM, East Balt is required to implement LAER for VOM. LAER is defined in 35 IAC 203.301(a) as "the more stringent rate of emissions" based on the following:

The most stringent emissions limitation which is contained in the implementation plan of any State for such class or category of stationary source, unless the owner or operator of the proposed stationary source demonstrates that such limitations are not achievable;"

USEPA maintains the RACT/BACT/LAER Clearinghouse (RBLC) database, containing permit limit and control technology standard information provided by state and local permitting agencies and regulatory emission limits and control technology standards promulgated by USEPA. This database is referenced to determine LAER for the control of VOM emissions from bakery ovens.

2.1. REVIEW OF STATE IMPLEMENTATION PLANS

The primary sources of VOM emissions at the Chicago facility are from Bakery Line #1 with oven and Bakery Line #2 with oven. In order to evaluate LAER for the bakery line ovens, East Balt first reviewed the most stringent State Implementation Plan (SIP) limits for this source category. The most stringent SIP limits identified from this review are established by the South Coast Air Quality Management District (SCAQMD), the Bay Area Air Quality Management District (BAAQMD), and the Texas Council on Environmental Quality (TCEQ). The SCAQMD, BAAQMD, and TCEQ regulate the worst ozone non-attainment areas in the United States; the SIP of these regulatory bodies are thus considered to be the most stringent.

The SCAQMD's Regulation 11, Rule 1153 establishes requirements for commercial baking ovens greater than 2.0 MMBtu/hr and with average daily emissions greater than 50 pounds of VOM. The most stringent requirement, which applies to new ovens (i.e., post-1990), is to reduce VOM emissions by 95 percent by weight.

The BAAQMD's Regulation 8, Rule 42 establishes requirements for large commercial baking ovens. All new and modified ovens and some existing ovens at large commercial bread bakeries (i.e., those producing more than 100,000 pounds of breads, buns, and rolls per day) are required to vent all emissions to an approved emission control system capable of reducing emissions of precursor organic compounds by 90 percent on a mass basis. Exemptions are included for low emitting (i.e., emitting less than 150 lb/day of ethanol) and some existing (i.e., pre-1998 and with emissions less than 250 pounds of ethanol per day) ovens.

The Texas Administrative Code (TAC) does not contain regulations establishing emissions or emissions control requirements for commercial bakeries.

2.2. POTENTIAL VOM CONTROL TECHNOLOGIES

A list of potential VOM control technologies for the bakery ovens is provided in the following sections.

2.2.1. Thermal Oxidizer

Thermal oxidation is the process of oxidizing organic contaminants in a waste gas stream by raising the temperature above the auto-ignition point in the presence of oxygen for sufficient time to completely oxidize the organic contaminants to carbon dioxide and water. The residence time, temperature, flow velocity and mixing, and the oxygen concentration in the combustion chamber affect the oxidation rate and destruction efficiency. Thermal oxidizers typically require combustion of an auxiliary fuel (e.g., natural gas) to maintain combustion chamber temperatures high enough to completely oxidize the contaminant gases. Thermal oxidizers are typically designed to have a residence time of one second or less and combustion chamber temperatures between 1,200 and 2,000°F.¹

The three types of thermal oxidation systems include direct flame, recuperative, and regenerative thermal oxidizers, which are differentiated by the type of heat recovery equipment used. A direct flame thermal oxidizer consists of only a combustion chamber with no heat recovery equipment. In a recuperative thermal oxidizer, the waste gas stream is preheated using the heat content of the treated gas stream, typically using a shell and tube or plate heat exchanger, resulting in improved oxidizer efficiency and significant fuel cost savings. In a regenerative thermal oxidizer, a high-density media such as a packed ceramic bed, which was heated in a previous cycle, is used to preheat the incoming waste gas stream, resulting in improved oxidizer efficiency and significant fuel cost savings. In general, thermal oxidizers are less efficient at treating waste gas streams with highly variable flow rates since the variable flow rate results in varying residence times, combustion chamber temperature, and poor mixing. VOM destruction efficiencies greater than 98 percent are achievable under certain operating conditions. A VOM destruction efficiency of 95 percent is achievable on a consistent basis under normal operational conditions for a typical bakery operation.^{2,3,4}

2.2.2. Catalytic Oxidizer

Catalytic oxidation allows oxidation to take place at a faster rate and at a lower temperature than is possible with thermal oxidation. The oxidation is facilitated by the presence of the catalyst and carried out by the same basic chemical reaction as thermal oxidation.⁵ VOM destruction efficiencies greater than 98 percent are achievable under certain operating conditions. A VOM destruction efficiency of 95 percent or a VOM outlet concentration of 10 ppmv or less is achievable on a consistent basis under normal operational conditions for a typical bread baking operation.⁶

2.2.3. Wet Packed Bed Scrubber

A wet packed bed scrubber is an absorption system in which a waste gas stream interacts with a scrubbing liquid, most commonly water, inside a contact chamber containing a bed of packing media in order to strip contaminant gases from the waste gas stream. A VOM destruction efficiency of 95 percent is achievable on a consistent basis under normal operational conditions for a typical bakery operation.⁷

¹ U.S. EPA. Air Pollution Control Technology Fact Sheet (Thermal Incinerator), EPA-452/F-03-022.

² U.S. EPA. Air Pollution Control Technology Fact Sheet (Thermal Incinerator), EPA-452/F-03-022.

³ U.S. EPA. Air Pollution Control Technology Fact Sheet (Regenerative Incinerator), EPA-452/F-03-021.

⁴ Technical Support Document, Appendix B for IDEM Significant Permit Modification No. 163-31955-00040.

⁵ U.S. EPA. Air Pollution Control Technology Fact Sheet (Catalytic Incinerator), EPA-452/F-03-018.

⁶ Technical Support Document, Appendix B for IDEM Significant Permit Modification No. 163-31955-00040.

⁷ U.S. EPA. Alternative Control Technology Document for Bakery Ovens, EPA-453/r-92-017.

2.2.4. Carbon Adsorption

Carbon adsorption technology utilizes a porous solid to selectively collect VOM from the gas stream. Adsorption collects VOM, but does not destroy it. Carbon adsorption is not well suited for use in bakery ovens because ethanol, the primary organic gas in the oven exhaust, has a high affinity for carbon and is difficult to strip from the carbon beds. Incomplete stripping lowers the bed's capacity and reduces abatement efficiency. In addition, fats and oils can clog the porous solid, reducing capacity and bed life. Therefore, this control technology is not considered to be technically feasible for use in food industry ovens.

2.2.5. Biofiltration

Biofiltration is a process in which a waste gas stream is passed through a bed of peat, compost, bark, soil, gravel, or other inorganic media in order to strip organic contaminant gases from the waste gas stream through the process of dissolution in the bed moisture and adsorption to the bed media. Under aerobic conditions, microorganisms naturally present in the bed oxidize the organic contaminant gases to carbon dioxide, water, and additional biomass. If the temperature of the waste gas stream is too high, the gas stream must be cooled to an optimum temperature before it can be treated in the biofilter in order to maintain the viability of the microorganisms. In addition, the bed must be monitored and maintained at an optimum moisture content and pH in order to prevent cracking of the bed media and to maintain the viability of the microorganisms.¹⁰

Based on a typical bread oven operating temperature of 430 to 460 degrees Fahrenheit in the final baking zone, the temperature of the exhaust from the oven would exceed the required range for the viability of mesophilic bacteria. Additionally, the wastewater and fats condensation associated with cooling strategies are significant, and sufficient space for the required soil beds is unavailable at many bakeries in the United States. ¹¹ Therefore, this control technology is not considered to be technically feasible for use in food industry ovens.

2.2.6. Refrigerated Condensers

Condensation is the process by which the temperature of the waste gas stream is lowered to below the dew points of the contaminants gases in waste gas. A refrigeration condenser normally provides VOM control efficiency greater than 90 percent. However, the low concentration of VOM and the high flow rate, temperature, and moisture content of the oven exhaust would adversely impact the control efficiency for a baking oven. In addition, fats and oils contained in the exhaust would reduce the control efficiency of the condenser and create sanitation concerns. Therefore, this control technology is not considered to be technically feasible for use in food industry ovens.

2.2.7. Good Combustion Practices

As stated above, emissions of VOM from the bakery line ovens are a result of liquid ethanol present in the dough. The raw materials used in the production of the baked goods will not be altered; however good combustion practices may be used to minimize products of incomplete combustion from the fuel.

⁸ U.S. EPA. Choosing an Adsorption System for VOC: Carbon, Zeolite, or Polymers? EPA-456/F-99-004.

⁹ U.S. EPA. Alternative Control Technology Document for Bakery Ovens, EPA-453/r-92-017.

¹⁰ U.S. EPA. Alternative Control Technology Document for Bakery Ovens, EPA-453/r-92-017.

¹¹ U.S. EPA. Alternative Control Technology Document for Bakery Ovens, EPA-453/r-92-017.

¹² U.S. EPA. Alternative Control Technology Document for Bakery Ovens, EPA-453/r-92-017.

2.3. SELECTION OF LAER

Based on the control technology review in Section 2.2, technically feasible control technologies for the control of VOM emissions from bakery ovens include a thermal oxidizer, catalytic oxidizer, wet packed bed scrubber, and good combustion practices. The highest VOM destruction efficiency achievable on a consistent basis under normal operational conditions for a typical bakery line oven for any of these control technologies, excluding good combustion practices, is 95 percent.

A review of sources permitted from 1995 to 2013 and identified under the process code 70.550 (Bakeries and Snack Foods) in the RBLC indicates that in practice the highest demonstrated control efficiency for the control of VOM emissions from bakery ovens is 95 percent, consistent with the most stringent SIP requirements for commercial bakery ovens (i.e., SCAQMD Regulation 11, Rule 1153). The results of the RBLC search are included in Appendix B.

East Balt is proposing a LAER VOM emission limit of 1.29 tpy and 10 parts per million by volume (ppmv) by utilizing a catalytic oxidizer with a 98 percent control efficiency. This proposed emission limit is more stringent than any current BACT/LAER limits or SIP requirements for commercial bakery ovens. In addition, East Balt, as part of a supplemental environmental program, will voluntarily control VOM emissions from Bakery Line #2 oven using the proposed catalytic oxidizer.

The NANSR regulations of 35 IAC 203.306 requires major modifications to a source of a non-attainment pollutant to perform an analysis of alternatives to the proposed project. In accordance with this regulation, East Balt must:

"demonstrate that benefits of the new major source or major modification significantly outweigh the environmental and social costs imposed as a result of its location, construction, or modification, based upon an analysis of alternative sites, sizes, production processes and environmental control techniques for such proposed source."

To meet this requirement, East Balt has investigated the possibility of relocating the source to a site outside the Metropolitan Chicago nonattainment area, using a different method of manufacturing the baked goods, and utilizing different control methods than what has been proposed in this application. After careful examination, East Balt has concluded that the major modification including the replacement of the Baking Line #1 oven at the Chicago facility has a greater environmental and social benefit than any of these other alternatives.

3.1. ALTERNATIVE SITES

East Balt's facility has already been constructed, at a site chosen within the center of its customer service area. It could not serve this customer base at a site located outside of the Chicago nonattainment area, due to excessive transportations costs that would be required to deliver products to customers who are almost exclusively located with the Chicago nonattainment area. In addition to being economically infeasible to locate outside of the Chicago nonattainment area, doing so – even if it were economically possible – would result increased air pollution from the increased mileage required to transport products. For all of these reasons, no alternative site has been or should be considered.

PAGE 81

Table 1, Line 1 Oven RBLC & Permit Search Results - VOC

RBLCID	Facility/Company	State	State Permit Date	Process Type	Control Type I	Limit 1	Units	Limit 1 Units Efficiency	Nates
CA-0468 Cer	CA-0468 Certified Grocers Of California Ltd.	CA	CA 09/14/1990 Oven, Ba	Bakery	Catalytic Afterburner	58	lb/day	95%	
									VOC control waived based on the absence of existing examples of VUC
					Permit Condition, Stack				controls of bread baking ovens, except for one fest installation, and on
VA-0110 Aut	VA-0110 Automatic Rolls Of Virginia, Inc.	٧A	VA 02/19/1988 Oven		Test	13.8	13.8 lb/day	%0	unreasonable costs.

PAGE 82

Table 1. Line 1 Oven RBLC Search Results - VOC

					The state of the s		The second secon							
RBLCID	Facility/Company	State Per	Permit Date	Process Type	Control Type	Limit 1	Units	Efficiency	Limit 2	Units	Avg. Perlod	Notes		
, IN-0120	IN-0120 Allen Foods, Inc.	IN 07,	07/13/2006 Bread Oven	Bread Oven	Catalytic Oxidizer	95	% overall control	%56	10	ppmv	•			
IN-0124	IN-0124 Allen Foods Inc	IN 03	/30/2012	03/30/2012 Bread Line Oven	Catalytic Oxidizer	95	% efficiency	95%	10	ррти	3 hrs			
IN 0424	IN 0134 Allen Foods Inc	IN 03	/30/2012	03/30/2012 English Muffin Lines	Catalytic Oxidizer	95	% efficiency	95%	10	ррти	3 hrs			
1N-0128	IN-0128 White Castle System, Inc.	IN 10,	/14/2011	10/14/2011 Bread Baking Line	Catalytic Oxidizer	95	% efficiency	92%	10	ррту	3 hrs			
				-20	Catalytic Oxidizers For	1			i,		į			
IN-0132	IN-0132 Alpha Baking Co., lnc.	N 08	/09/2011	09/09/2011 Bread Baking Operation	Natural Gas Fired Oven	95	% efficiency	92%	10	ppmv	3 hrs			
					Catalytic Oxidizers For									
IN-0132	IN-0132 Alpha Baking Co., Inc.	100 NI	/09/2011	08/09/2011 Bun Baking Line	Natural Gas Fired Oven Catalytic Oxidizers For	92	% efficiency	%56	10	ppmv	3 hrs			
IN-0132	IN-0132 Alpha Baking Co., Inc.	IN 08,	/09/2011	08/09/2011 Baking Line	Natural Gas Oven Work Practice	95	% efficiency	95%	10	ppmv	3 hrs			
IN-0134	IN-0134 Maplehurst Bakeries, Inc.	IN 05,	/25/2012	05/25/2012 Donut Production Line	Standards Work Practice	40	tpy	%0	ř.	i k				
IN-0134	IN-D134 Maplehurst Bakeries, Inc.	IN 05,	/25/2012	05/25/2012 Donut Production Line	Standards Work Practice	61	ф	%0	Ĭ,		<u>.</u>			
IN-0148	IN-0148 Hartford Bakery, Inc.	60 NI	/07/2012	09/07/2012 Bun Production Line	Standards	47	tþý	%0		٠				
AZ-0029	AZ-0029 Holsum Bakery, Inc.	AZ 03,	03/01/1996 Oven	Oven	Quencher/Scrubber	20	фу	81%	9	i.	Ovidizer Temp			
CA-0854	CA-0854 Manle Leaf Bakery	CA 10,	8661/90/	10/06/1998 Stacks Total	Catalytic Oxidizer	92	% efficiency	92%	009	Degree F	(Roc)		ja	
CA-0859	CA-0859 Freund Baking Company	CA 07,	/16/1997	07/16/1997 Oven, Bakery, Baker Equipment	Catalytic Oxidizer	92	% efficiency	95%	(A)	•	**			
	Proctor And Gamble Manufacturing				Exclusive Use Of	ī	81				*			
TN-0111	TN-0111 Company	TN 03/	/19/1998	03/19/1998 Dryer On Shack Making Line	Natural Gas	0,04	lb/hr	0%0					-	